Effective Dose in Paediatric Computed Tomography

S.Willis, C-L Chapple & J Frame

Regional Medical Physics Department Newcastle General Hospital

- Why do we need to know?
- What have we got available?
- Produce some results.
- Test the method.
- Initiate a survey.

Why do we need to know?

- CT is generally considered a high dose procedure.
- 40% of annual medical radiation dose from only 5% of the examinations undertaken.
- Little dosimetry data available for paediatric CT due to great size variation.
- We have the means!

Aims of the project.

To establish a method for calculating effective dose.

- Use easily measured parameters

Parameters?

- Height & weight
- Equivalent diameter
- CTDIw
- Dose Length Product report

- Age only?
- Weight only ?
- DLP ?

$$E_{diameter} = \sqrt[2]{\frac{W(g)}{H(cm) \cdot \pi}}$$

What have we got available?

- A full set of paediatric dosimetry phantoms.
- Plenty of TLD.
- Access to several CT scanners.

- Fix areas of phantoms to be scanned.
- Decide on some scanning parameters.
- Do CTDI measurements on scanner.
- TLD loaded into the phantoms.
- Scan areas of the phantoms repeatedly to accumulate a dose on the TLD.

Fix areas to be scanned

- Fix areas of phantoms to be scanned.
- Decide on some scanning parameters.
 - Scan areas of the phantoms repeatedly to accumulate a dose on the TLD.

- Fix areas of phantoms to be scanned.
- Decide on some scanning parameters.
- Do CTDI measurements on scanner.
 - Use weighted values from 16cm PMMA phantom
 - 'Paediatric body'

- Fix areas of phantoms to be scanned.
- Decide on some scanning parameters.
 - Scan areas of the phantoms repeatedly to accumulate a dose on the TLD.
- Do CTDI measurements on scanner.
- TLD loaded into the phantoms.

Phantoms & TLD

- All Organs containing a number of TLD.
- Most sections covered
- TLD 100
- Oven Annealing
- Calibration of TLD

- Neonate 135 TLD
- 15 year old 245 TLD
- 4 separate examinations
- Some repeats

- Fix areas of phantoms to be scanned.
- Decide on some scanning parameters.
 - Scan areas of the phantoms repeatedly to accumulate a dose on the TLD.
- Do CTDI measurements on scanner.
- TLD loaded into the phantoms.
- Scan the area of the Phantom.

What next?

- Read TLD
- Calculate Effective Dose
- Calculate the Dose Length Product using the 'paediatric body' CTDI_w
- Plot graphs of effective dose / DLP against equivalent diameter of the phantom

Effective Dose = DLP x $Y_o + (A_1 x e^{-(X/t_1)})$

Look up Y_0 , A_1 and t_1 from the table

X is the equivalent diameter of the child

Ref. C-L Chapple, S Willis & J Frame Phys. Med. Biol.47 (2002) 107-115

Area	Y ₀ (mSv mGy ⁻¹ cm ⁻¹)	A ₁ (mSv mGy ⁻¹ cm ⁻¹)	<i>t</i> ₁ (cm)
Head	0.00351	0.877	14.2
Chest	0.00736	0.272	4.07
Abdomen	0.00832	0.881	2.87
Pelvis	-0.0419	0.114	25.3

Test out the Theory

- Scan area to include parts of other areas

 use some of the over-scanned phantom data
- Repeat some of the experiment on other scanners with different beam filtrations
- Get some protocols to calculate some doses

Calculation

- Example: Neonate Abdomen & Pelvis
- 120kV, 200mAs, 10mm,13slices, Siemens Somatom Plus4
- 0.3 scan in Abdomen & 0.7 scan in Pelvis

Neonate Abdomen-Pelvis

4.23mSv Abdomen

8.5mSv Pelvis

Total for full scan = 12.7 mSv

Neonate Abdomen-Pelvis Siemens Somatom +4

- Predicted Dose $_{effective} = 12.7 \text{mSv}$
- Measured Dose $_{effective} = 12.9 \text{mSv}$

5 year old Chest with Abdomen Toshiba Asteion

- Predicted Dose $_{effective} = 15.5 \text{mSv}$
- Measured Dose $_{effective} = 17.0 \text{mSv}$

Real Patients.

- Neonate Head
- 5 yr High Resolution Chest
- Neonate Abdomen
- 10 yr Abdomen
- Neonate Chest-Abdomen
- 10 yrs Chest-Abdomen

3-12 mSv
0.4-1.2 mSv
7.2 mSv
4.2 mSv
7.5 mSv
5.1 mSv

Conclusion.

- We have established a method for calculating Paediatric effective doses for CT examinations.
- Can be used for a range of CT scanner.
- Tested this method.
- Calculated some real doses for real patients.

Effective Dose in Paediatric Computed Tomography

S.Willis, C-L Chapple & J Frame

Ref. C-L Chapple, S Willis & J Frame Phys. Med. Biol.47 (2002) 107-115