The relationship between image noise and spatial resolution of CT scanners

Sue Edyvean, Nicholas Keat, Maria Lewis, Julia Barrett, Salem Sassi, David Platten

ImPACT*, St George's Hospital, London *An MDA device evaluation group, www.impactscan.org

Image noise and spatial resolution

• Aims

- Describe the origins of the ImPACT Q factor

- Explore the proportionality relationships
 - in particular; noise against resolution
- From the findings, look at some implications

The ImPACT Q factor

Describes a relationship of image quality with respect to dose

$$Q \alpha \sqrt{\frac{f^3}{\sigma^2 z D}}$$

f = spatial resolution

$$\sigma$$
 = image noise
z = slice width
D = dose

High Q factor

- good 'image quality' with low dose
- high spatial resolution, low noise, narrow slice

The ImPACT Q factor

Drawn from the proportional relationship

$$\sigma^2 \alpha \frac{f^3}{z D}$$

f = spatial resolution expressed as a frequency (c/cm)

 σ = image noise

z = slice width

$$D = dose$$

Theoretical derivation

- Rodney Brookes and Giovanni di-Chiro (1976) Statistical limitations in x-ray reconstructive tomography Medical Physics Vol 3, No 4 July 1976
- Riederer S.J., Pelc N.J. and Chesler D.A. (1978) The Noise Power Spectrum in Computed Tomography Physics in Medicine and Biology 1978 23(3), 446-454

$$\sigma^{2}(\mu) = \frac{\pi^{2} \beta \gamma(E) e^{\alpha} \mu_{en} E}{1200 \omega^{3} z D}$$

Other publications, reports and books

- Bassano D.A. (1980, AAPM Summer School)
 - Specification and Quality Assurance for CT Scanners
- IPEM TGR 32 iii (1st Edition, 1981)
 - Measurement of Performance Characteristics of CT Scanners
- Farr RF and Allisy-Roberts PJ (1997)
 - Physics for Medical Imaging
- Seeram E., 2000

 Computed Tomography, Physical Principles, Clinical Applications and Quality Control (2nd Edition)

$$\sigma^2 \alpha \frac{f^3}{z D}$$

Unpacking the relationship

noise relationship with number of photons
 – established
 1

$$\sigma^2 \alpha \frac{1}{N}$$

number of photons
 proportional to slice thickness and mAs (dose)

$$\sigma^2 \alpha \frac{1}{z D}$$

Unpacking the relationship

noise relationship with spatial resolution ?

$$\sigma^2 \alpha f^3$$
 ...?

$$\sigma^2 \alpha \frac{f^3}{z D}$$

Empirical approach

measure image noise and spatial resolution
range of convolution kernels

@ constant dose and slice width

$$\sigma^2 \alpha \frac{f^3}{z D}$$

Image noise

water filled phantom image

scan projection radiograph

scan

'noise' = standard deviation (σ) of CT values in region of interest

Spatial resolution

Modulation transfer function

resolution descriptors

- frequency at MTF₅₀
- frequency at MTF₁₀
- Q uses average of MTF₅₀, MTF₁₀

- more recently
 - MTF_{80}
 - $-MTF_2 \approx$ 'cut-off'
 - integral (area under curve)

spatial frequency (cm⁻¹)

Scanners and algorithms used

- IGE Lightspeed
 - h: soft, standard, lung, detail, bone, edge
 - b: soft, standard, lung, detail, bone, edge
- Siemens Volume Zoom
 - h: AH..10,20,30,40,50,60,70
 - b: AB...10,20,30,40,50,60
- Toshiba Aquilion
 - h: FC...20,21,22,23,24,25,26,27,28,30,80
 - b: FC....10,11,12,13,14,30
- Marconi (Philips) MX8000
 - h: A,EB,EC,B,C,D
 - b: A,EC,B,C,D

Siemens VZ, all algorithms, head scans

Empirical view of noise versus resolution

- early papers only considered simple algorithms
 - ramp filter and Hanning weighted
 - some filter frequencies boosted very differently

Siemens VZ, low res. algorithms, head scans

All scanners, all algorithms, body scans

All scanners, low res. algs, body scans

Empirical view of noise versus resolution

early papers

 derivations focussed on limiting resolution characteristics eg detector aperture

Mean of all scanners, all MTF, all algorithms

Body scans

parameter	resolution power for sigma ^{^2}		
	mean	range +/-	
mtf ₈₀	3.0	0.7	
mtf ₅₀	4.2	0.2	
mtf ₁₀	5.2	1.1	
mtf ₂	3.0	1.6	
mtf _{integral}	3.9	0.4	
avg _{MTF50,10}	5.0	0.7	

Empirical view of noise versus resolution

 power factor for MTF₅₀ and MTF₁₀ is greater than 3; ~ between 4 and 5

$$\sigma^2 \alpha \frac{f^{\approx 4-5}}{z D}$$

Empirical view of noise versus resolution

- how does this affect the calculation of Q ?
- minimise the influence of the power relationship
 - specify resolution
 - eg. body resolution values of $MTF_{50} = 3.4 \text{ c/cm}$, $MTF_{10} = 6 \text{ c/cm}$
 - find algorithm giving resolution data closest to that value
 - calculate Q

$$Q \alpha \sqrt{\frac{f^3}{\sigma^2 z D}}$$

All scanners, body scans, lower resolution algorithms

All scanners, body scans, lower resolution algorithms

All scanners, body scans, lower resolution algorithms

Conclusion

The ImPACT Q factor relies on an established relationship

$$\sigma^2 \alpha \frac{f^3}{z D}$$

 using average resolution parameters from the MTF, the noise squared relationship to resolution is shown to be to a power greater than 3

$$\sigma^2 \alpha \frac{f^{pprox 4-5}}{z D}$$

• by choosing algorithms close to a fixed spatial resolution the algorithm dependence is minimised

The relationship between image noise and spatial resolution of CT scanners

Sue Edyvean, Nicholas Keat, Maria Lewis, Julia Barrett, Salem Sassi, David Platten

ImPACT*, St George's Hospital, London *An MDA device evaluation group, www.impactscan.org

Theoretical Relationships

Rodney Brookes and Giovanni di-Chiro

Theoretical Relationships

 $\sigma^{2}(\mu) = \frac{\pi^{2} \beta \gamma(E) e^{\alpha} \mu_{en}}{1200 \omega^{3} z D}$

Microtomography - Basics

$$Time \propto \frac{SNR^2}{\rho\mu r^4} \exp\left(\frac{\mu d}{2}\right)$$

- *SNR* = signal-to-noise resolution
- ρ = density

r

- μ = linear attenuation coefficient
 - = voxel dimension
- d = object diameter

Courtesy of Dr. E.J. Morton, Department of Physics, University of Surrey

Mean of all scanners, average MTF_{50,10}

	all algorithms		low res. agorithms	
	mean	range +/-	mean	range +/-
body	5.0	0.7	4.1	0.6
head	5.5	0.3	4.4	1.2

• $MTF_{50,10}$ lower by 20% with lower res. algs.

- Head ~ 10% higher than body
- Power factor between 4 and 5

The ImPACT Q factor

Describes image quality with respect to dose

High Q (quality) factor

- good 'image quality' at low dose
- image quality in terms of
 - high spatial resolution, low noise, narrow slice

$$Q \alpha \sqrt{\frac{f^3}{\sigma^2 z D}}$$

f = spatial resolution

$$\sigma$$
 = image noise
z = slice width
D = dose

Unpacking the relationship

•
$$\sigma^2 \alpha \frac{f^3}{z D}$$

noise relationship with number of photons
 – established

$$\sigma^2 \alpha \ \frac{1}{N}$$

number of photons

 proportional to slice thickness and mAs (dose)
 1

$$\sigma^2 \alpha \frac{1}{z D}$$

Empirical view of noise versus resolution

- power factor is greater than 3; ~ between 4 and 5
- early papers only considered simple algorithms
 - ramp filter and Hanning weighted
 - some filter frequencies boosted very differently
 - theory looked at limiting resolution

Theoretical derivation

- Rodney Brookes and Giovanni di-Chiro (1976) Statistical limitations in x-ray reconstructive tomography Medical Physics Vol 3, No 4 July 1976
- Riederer S.J., Pelc N.J. and Chesler D.A. (1978) The Noise Power Spectrum in Computed Tomography Physics in Medicine and Biology 1978 23(3), 446-454

$$\sigma^{2}(\mu) = \frac{\pi^{2} \beta \gamma(E) e^{\alpha} \mu_{en} E}{1200 \omega^{3} z D}$$

Theoretical derivation

- Rodney Brookes and Giovanni di-Chiro (1976) Statistical limitations in x-ray reconstructive tomography Medical Physics Vol 3, No 4 July 1976
- Riederer S.J., Pelc N.J. and Chesler D.A. (1978) The Noise Power Spectrum in Computed Tomography Physics in Medicine and Biology 1978 23(3), 446-454