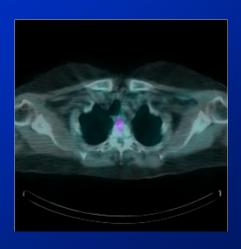
Calculation of Effective Doses for Radiotherapy Cone-Beam CT and Nuclear Medicine Hawkeye CT

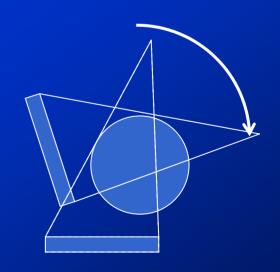
Laura Sawyer


Department of Medical Physics and Bioengineering, Royal United Hospital, Bath

Overview

- Varian Acuity ConeBeam CT
 - ConeBeam CT option available Sept 2005
 - Aim to use for breast and pelvis treatment planning

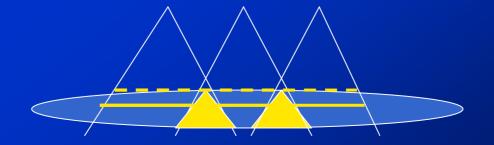
- GE Infinia Hawkeye SPECT / CT
 - Installed in March 2006
 - Enables registration of CT and Nuclear Medicine Images


ConeBeam CT

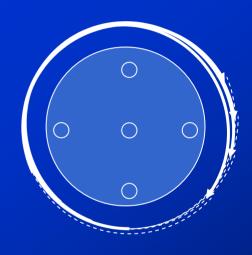
Full Fan

- irradiates uniformly over 360°
- Single rotation produces full image

Partial Fan


- for larger fields of view
- Detector is offset
- Centre of field of view is irradiated for whole rotation
- Edge of field of view is irradiated for fraction of the rotation

ConeBeam CT


- System upgrade in October 2006
 - Allows images to be 'stitched'
 - Images are acquired in 1, 2 or 3 rotations.
 - Images acquired using a single rotation can be collimated
 - Irradiated length at isocentre exceeds image length
 - For double and triple scans, irradiation at the isocentre overlaps at stitching area

 - 10cm overlap for 2.5mm slice width
 13.6cm overlap for 10mm slice width
 - It is not possible to collimate double and triple scans

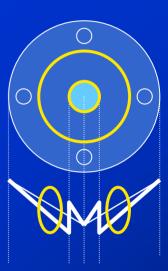
Infinia Hawkeye CT

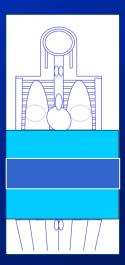
- All clinical scans use 'half scan' setting
 - 240° exposure per 360° rotation
- Rotational increment programmed between slices
 - Changes the 240° section irradiated

Doses were measured using CTDI head and body phantoms (16cm and 32cm diameters)

Effective Dose Calculations

Three calculation methods were compared:


- 1. IMPACT CT Patient Dosimetry Calculator
- 2. Combination of tissue weighting factors and fraction of organs in the beam
- 3. NRPB W-67 Effective dose conversion factors

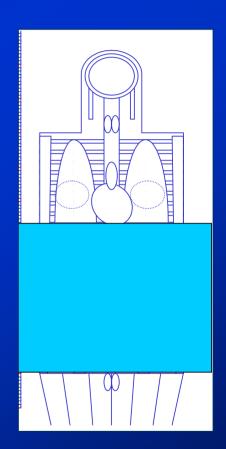

IMPACT CT Patient Dosimetry Calculator

- Each scanner was matched to an existing CT scanner
 - Using ratio of dose measurements in air, to doses at centre and periphery of head and body phantoms
- Both scanners use maximum exposure parameters
 - ConeBeam CT: 125kV, 80mA, 15ms pulse, 45s rotation
 - Infinia Hawkeye: 140kV, 2.5mA, 2.6rpm, 10mm slice

IMPACT CT Patient Dosimetry Calculator for ConeBeam CT

- Assumes uniform irradiation
 - Correct for ConeBeam CT full fan
- Estimation only for partial fan
 - Assumes gradual variation in dose
 - Small high dose area at centre
 - Doses to organs between centre and periphery of body will be overestimated
 - E.g. lung, colon, stomach, liver
- For double and triple scans
 - Calculate dose for full scan length
 - Add dose at stitching overlap

IMPACT CT Patient Dosimetry Calculator for Infinia Hawkeye


- Variation in dose around periphery
 - Due to 240° irradiation
 - And couch attenuation

- Average peripheral dose used for scanner match
 - Irradiated area varies due to rotation increment between slices
 - Organs exceeding 15cm length will receive approximately uniform irradiation
 - Dose will be underestimated if small radiosensitive organ is at irradiated surface e.g. thyroid

Organ Fractions Calculation

- Estimate fraction of each radiosensitive organ in the beam for common scans
 - Using IMPACT phantom
- Multiply by measured dose in phantom
- Multiply by tissue weighting factors
- Sum results for all organs

Organ Fractions Calculation: Infinia Hawkeye

- Clinical settings, with 'half scan'
 - Average peripheral dose: 4mGy
 - Central dose: 2mGy

Chest scan	Weighting factor	CTDI (mGy)	Fraction in beam	Organ dose
Lung	0.12	2	1	0.24
Stomach	0.12	2	0.1	0.02
Thyroid	0.05	4	0.2	0.04
Total				0.8

Organ Fractions Calculation: ConeBeam CT

- Partial fan for body scans
 - Average periphery: 20mGy
 - Centre: 12mGy
 - Average mid-points: 14mGy
- Dose measurements at mid-points correspond to dose at edge of head phantom
 - Apply mid-point doses to lung, stomach, liver
- For double and triple scans
 - Calculate dose for total scan length
 - Add dose for overlap in centre of scan

NRPB W-67 Effective Dose Conversion Factors

- Calculate dose length product:
 - CTDI (mGy/mAs)
 - mAs = mA x rotation time (x pulse length x frame rate)
 - Scan length
- Effective doses per DLP (mSv (mSv cm)⁻¹)
 - Head: 0.0021
 - Chest: 0.014
 - Abdo-pelvis: 0.015

Comparison of Methods for Infinia Hawkeye

Effective dose (mSv)	Chest	Abdo- pelvis	Head
IMPACT	1.0	1.6	0.10
Organ fraction	0.8	1.5	0.12
Conversion factors	0.9	1.5	0.11
Standard CT	2.6	6.2	1.4

- Standard scan lengths used in CT
- Good agreement between calculation methods
- Effective doses lower than standard CT due to low mAs

Comparison of Methods for ConeBeam CT (single scan)

Effective Dose (mGy)	Chest	Abdo- pelvis	Head
IMPACT	9.9	10	1.7
Organ fraction	4.7	5.3	1.4
Conversion factors	5.8	6.2	1.8
Standard CT	2.6	6.2	1.4

- IMPACT calculation: Overestimates doses to organs between centre and periphery of body
- Organ fraction method: Underestimates dose due to exclusion of scattered radiation to organs outside beam

ConeBeam CT: Stitched Images

- A single scan will produce a maximum image length of 14.4cm
- Data from 2 rotations may be stitched to produce a maximum image length of 28.8cm
 - Total image length depends on slice width selected
 - Overlap in centre of image depends on slice width
 - Total irradiated length is independent of slice width
 - Therefore, effective dose has negligible dependence on slice width
- Abdo-pelvis scans generally use double scan

Summary: Calculation Methods

- Infinia Hawkeye CT
 - Methods for calculating effective dose are in good agreement with one another

- ConeBeam CT
 - There is significant variation in doses
 - IMPACT method overestimates dose
 - Organ fraction method underestimates dose

Summary: Effective Doses

- Hawkeye doses are below diagnostic CT results
 - Half-scan setting is used for all patients
 - Scan length is determined individually for each patient
 - No option to reduce kV or mA
- ConeBeam CT doses may significantly exceed diagnostic CT doses
 - No option to reduce kV, mA
 - Recommendations:
 - Single scan should be used wherever possible
 - Longer pulse lengths only used for very low contrast details
 - Slice widths of 3-5mm compromise between data storage, reconstruction times, and prevention of double overlap
 - Double and triple scans only used where clinically justified