Investigation into the dose & image quality of Siemens Caredose 4D during clinical use: A comparison of 3 centres

Geraldine Revill Trainee Clinical Scientist Mount Vernon Hospital

Presentation Outline

- Introduction
- CAREDose 4D
- Study
- Results
- Conclusions & Further work

Introduction

- Radiation protection at MVH looks after 3 Siemens Sensation 16 scanners
- Have CAREDose 4D Software
- All use in different way

CAREDose 4D (Just in case a reminder....)

- Online current
 modulation
- Reference mAs
 - 70-80kg man
- Non constant Noise
 - "Adaptive
 Strength"
 corrections

Adaptive Strength Corrections [Lewis, 2007]

Study

- Phantom Measurements
 ImPACTs Conical AEC phantom
- Image quality
 - Noise

- Eff mAs= mA*rotation Time/Pitch
- CTDIvol

Patient Study

- **Chest Abdomen Pelvis (CAP) examination**
 - 129 patients in all (53,46,31)
 - Region of interest
 - Patient size

User Set-Up

• Different settings in each centre

Centre	Α	В	С
Ref mAs	220	200	160
Slim Correction	Average	Strong	Strong
Obese Correction	Weak	Weak	Weak
Reconstruction Algorithm	B30	B30	B31

Results: Phantom Measurements

Reconstruction algorithm 10% difference in noise
Variation of Noise with patient diameter
Best fit to second order polynomial

•Variation of eff mAs with patient diameter

 Adaptive strength corrections

Results: Patient Dose

- Statistically significant CTDIvol between centres
 Different Reference mAs at Each Centre
- Dose saving with AECs

Centre	Α	В	С
Average CTDIvol (cGycm)	10.81±0.33	9.76±0.63	8.81±0.35
Average CTDIvol: NO AECs (cGycm)	15.7	14.3	11.4

Results: Patient Image Quality

Noise Values: No statistically significant (P<0.05) difference between centres

How to use this?

- Assume as all centres aiming for similar levels of IQ that this is acceptable level for 5mm slice
- Set levels of image noise based on patient size

Patient Size	Noise	SD
17.5-20.49	11.6	1.3
20.5-23.49	13.3	1.3
23.5-26	15.0	1.3

How to Use...2

Correlate phantom to patient for CAREDose AECS

Patient size (Diameter along AP, cm)	Recommended Noise (SD)	Corresponding effective mAs in the phantom
17.5-20.49	11.6	139
20.5-23.49	13.3	212
23.5-26	15.0	291

Conclusions

- Parameters that have the largest effect on dose are those selected by the user at set up
- Dose saving of up to 32% using the AECs
- Variation of CTDIvol by 18.5% between centres
- Recommended values of image noise

Further Work

- Adaptive strength corrections not fully understood
- Use levels of image noise for optimisation on the three scanners
- Repeat for other examinations?

Thankyou!

- Jane Shekhdar
- Edwin Aird
- The team at ImPACT

Radiographers at each centre (esp Nicky at MVH)

References

Lewis M A 2007 Principles & implementation of automatic exposure control systems in CT Presentation UKRC 2007 <u>www.impactscan.org</u>
 Keat N 2005 Report 05016 CT Scanner Automatic exposure control systems ImPACT MHRA February 2005 IBSN 1 84182 947 1