Effective dose estimation for CT component of SPECT/CT systems

Paul Charnock – Scientific Officer, IRS Itd

CTUG meeting 2009 - Belfast

Contents

- Background
- Method
- Results
- Discussion
- Conclusion
- Further Work

Background

IRS

- MPE and RPA for a number of trusts in mainly in North West England
- Mostly deal with diagnostic

Me

- Worked with IRS for nearly 6 years
- Specialist areas CR/DR, CT & R&D

RLUH

- IRS do diagnostic but own in-house medical physics for Nuclear Medicine
- The have 2 SPECT/CT systems and support 3 others in region

Background

SPECT/CT

- 1 GE Hawkeye @ RLUH
- 1 Siemens Symbia T@ RLUH
- 2 GE Hawkeye (Whiston, Warrington)
- 1 Siemens Symbia T (Aintree)
- IRS do performance checks on CT component
- RLUH do performance checks on SPECT component

Can we work together to estimate the Effective Dose to a patient undergoing treatment on one of these units?

Method

Proposal

- Use ImpaCT CTDI phantom to confirm console readout
- Use CTDI to estimate DLP
- Convert DLP to Eff. Dose using published conversion factors
- Compare results with published data Simple?

Method

DLP to Eff. Dose

- Doses to Computed Tomography Examinations in the UK – 2003 Review (Table 3)
- Table 13 used for Typical doses

Eff. Dose per DLP for Adult (mSv per mGycm)
0.0031
0.0021
0.0059
0.014
0.015
0.015

Method

Examinations

- Brain SPECT (eg brain perfusion scan [Tc99m-HMPAO] or bone scan [Tc99m-MDP])
 Probably best represented by Head
- Body SPECT (eg bone scan [Tc99m-MDP], Neuro-Endocrine Tumour (NET) imaging [primarily In111-Octreotide or I123-MIBG)] or Parathyroid adenoma localistation [Tc99m-MIBI]

Probably best represented by Trunk

Results

CTDI

- Measured with Radcal dosimeter and 10cm pencil chamber
- Used ImpaCT CTDI phantom, both head and body parts
- Used clinical protocol on Symbia, but QA protocol on Hawkeye

Results

Comparison

	GE Infinia Hawkeye		Siemens Symbia T	
	Head	Body	Head	Body
CTDI _{w/vol} (mGy)	5.69	4.09	10.95	1.75
DLP (mGycm)*	113.8	81.8	219.11	34.98
Eff. Dose (mSv)	0.35	1.227	0.460	0.525
Typical Eff. Dose (mSv)	1.5 Routine Head	5.3 Abdomen	1.5 Routine Head	5.3 Abdomen

*As Hawkeye slice is fixed at 20cm, DLP calculated for 20cm length for both scanners and body parts

GE Infinia Hawkeye

- Much longer scan time (25s)
- Very different to diagnostic scanner
- Axial scans (CTDI_w)
- Slice was restricted to 20cm using clinical protocol although QA protocol had 1cm slice – This was used to verify CTDI
- Very easy to interpret parameter and results

Siemens Symbia T

- Shorter Scan time
- Pretty similar to diagnostic scanner
- Helical scans (CTDI_{vol})
- Uses CareDose (no impact on these results)
- Parameters difficult to interpret (slice / collimation combination – took email to Siemens to interpret)
- Able to use clinical protocol

Method for DLP to Effective Dose

- ???
- Perhaps this can only really be answered with further study

Comparison with Published Data

- As images are not meant to be diagnostic, Eff. Dose would be expected to be lower than typical diagnostic values – This is the case
- Interestingly, the ratio of measured Eff. Dose values on the Hawkeye (Head/Body) is almost same as ratio of typical values – 0.35/1.22 = 1.5/5.3 = 0.28
 Does this suggest that the a fraction of typical values would be worth using (25%)?

Conclusion

- Method for checking displayed CTDI good
- A good collaboration between Diagnostic & NM Physicists
- Baseline values have been set now for future comparison

Further Work

- Study with TLD / Rando to confirm / establish conversion factors
- Work on a Philips scanner
- Collect data from many other scanners to establish typical CTDI / DLP / Eff. Dose

Thanks

Matt Ward
Scientific Officer, IRS

Ian Hufton Senior Physicist in NM, RLUH

Melvyn Carroll
Consultant Physicist in NM, RLUH