

Image Diagnostic Technology Ltd

5th Floor, Hyde Park Hayes 3, 11 Millington Road, Hayes UB3 4AZ Tel: +44 20 8982 3588 www.simplantscans.com email: info@ctscan.co.uk

Approximating Dose and Risk in Dental CT and Cone Beam CT

Anthony Reynolds BA MSc PhD Registered Clinical Scientist CS03469

Image Diagnostic Technology Ltd

Dental (CB)CT Scans

- Bony anatomy of Mandible, Maxilla or Both
- Useful for:
 - planning dental implants
 - maxillofacial surgery
 - TMJ and airway analysis
 - impacted and supernumerary teeth
 - ≻root canals, root fractures etc
- High natural contrast
- High resolution
- Low dose

Rationale

risk Clinicians want to know the dose (today)

It is better to have an answer that is roughly right than very precisely wrong

It is not good to have no answer at all.

Outline of Presentation

Main Topic:

• How can we calculate doses quickly with sufficient accuracy for the task at hand?

Underlying Topics:

- Why do we care about radiation dose?
- How accurate do we need to be?
- What can we do if we only have limited information?

IR(ME)R 6.2 Justification of Individual Medical Exposures

Must give appropriate weight to:

- a) the specific objectives of the exposure
- b) the total potential diagnostic or therapeutic benefits
- c) the individual detriment that the exposure may cause
- d) the efficacy, benefits and risks of available alternative techniques.

Annals of the ICRP

PUBLICATION 103

The 2007 Recommendations of the International Commission on Radiological Protection

Editor J. VALENTIN

PUBLISHED FOR

The International Commission on Radiological Protection

by

ICRP 103:

"the combined detriment due to excess cancer and heritable effects remains unchanged at around 5% per Sv"

Effective Dose is a way of describing the dose to a limited region in terms of the whole body dose that would result in the same risk to the patient

"Effective dose is not recommended for epidemiological evaluations, nor should it be used for detailed specific retrospective investigations of individual exposure and risk."

Risk varies with Age

Age group (years)	Multiplication factor for risk	
<10	x 3	
10-20	x 2	
20-30	x 1.5	5 7% por Sigvert at ago 20
30-50	x 0.5	
50-80	x 0.3	
80+	Negligible risk	

RADIATION PROTECTION N° 172 A report prepared by the SEDENTEXCT project 2011
<u>www.sedentexct.eu</u>

How accurate do we need to be?

- A factor of 2 change in risk is unlikely to bring about a change in the patient's management.
- A factor of 10 would be in line with estimates of risk in other areas.

Cancer: science and society and the communication of risk

Kenneth C Calman

BMJ VOLUME 313 28 SEPTEMBER 1996

This article is based on the Calum Muir lecture, delivered in Edinburgh in September 1996.

Table 2—Descriptions of risk in relation to the risk of an individual dying (D) in any one year or developing an adverse response (A)

Term used	Risk range	Example	Risk estimate
High	≥1:100	(A) Transmission to susceptible household contacts of measles and chickenpox ⁶	1:1-1:2
		(A) Transmission of HIV from mother to child (Europe) ⁷	1:6
		(A) Gastrointestinal effects of antibiotics ⁸	1:10-1:20
Moderate	1:100-1:1000	(D) Smoking 10 cigarettes a day ⁹	1:200
		(D) All natural causes, age 409	1:850
Low	1:1000-1:10 000	(D) All kinds of violence and poisoning ⁹	1:3300
		(D) Influenza ¹⁰	1:5000
		(D) Accident on road ⁹	1:8000
Very low	1:10 000- 1:100 000	(D) Leukaemia ⁹	1:12 000
		(D) Plaving soccer ⁹	1:25 000
		(D) Accident at home ⁹	1:26 000
		(D) Accident at work ⁹	1:43 000
		(D) Homicide ⁹	1:100 000
Minimal	1:100 000- 1:1 000 000	(D) Accident on railway ⁹	1:500 000
		(A) Vaccination associated polio ¹⁰	1:1 000 000
Negligible	≤1:1 000 000	(D) Hit by lightning ⁹	1:10 000 000
		(D) Release of radiation by nuclear power station ⁹	1:10 000 000

What do we mean by "the right answer"?

- a) Use ImPACT Spreadsheet to calculate Effective Doses
- b) Use Monte Carlo methods to calculate Effective Doses
- c) Use TLD measurements in a Rando phantom to calculate Effective Doses.

Effective Dose (E)

$$E = \sum_{T} H_T w_T$$

 $H_T =$ Organ Equivalent Dose $w_T =$ Tissue weighting factor

Unit = (Sv) Sievert Effective Dose is proportional to risk of fatal cancer

	w _T value ICRP10
Brain	0.01
Salivary glands	0.01
Skin	0.01
Thyroid	0.04
Oesophagus	0.04
Lung	0.12
Red bone marrow	0.12
Breast	0.12
Bone surface	0.01
Liver	0.04
Stomach	0.12
Colon	0.12
Ovary	0.08
Bladder	0.04
Testes	0.08
Remainder	0.12

Contents lists available at ScienceDirect

RADIOLOGY

European Journal of Radiology

Effective dose range for dental cone beam computed tomography scanners

Ruben Pauwels^{a,*}, Jilke Beinsberger^{a,1}, Bruno Collaert^{b,2}, Chrysoula Theodorakou^{c,d,3}, Jessica Rogers^{e,3}, Anne Walker^{c,3}, Lesley Cockmartin^{f,4}, Hilde Bosmans^{f,5}, Reinhilde Jacobs^{a,6}, Ria Bogaerts^{g,7}, Keith Horner^{d,8}, The SEDENTEXCT Project Consortium⁹

- ^a Oral Imaging Center, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven, Belgium
- ^b Center for Periodontology and Implantology, Heverlee, Belgium
- ^c North Western Medical Physics, The Christie NHS Foundation Trust, Manchester Academic Health Sciences Centre, UK
- ^d School of Dentistry, University of Manchester, Manchester Academic Health Sciences Centre, UK
- ^e School of Medicine, University of Manchester, Manchester Academic Health Sciences Centre, UK
- ^f Department of Radiology, University Hospital Gasthuisberg, Leuven, Belgium
- 8 Department of Experimental Radiotherapy, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Belgium

Effective dose for large field CBCTs

Prof. Ria Bogaerts, Katholieke Universiteit Leuven, March 2011

Effective dose for medium field CBCTs

Prof. Ria Bogaerts, Katholieke Universiteit Leuven, March 2011

Effective dose for small field CBCTs

Prof. Ria Bogaerts, Katholieke Universiteit Leuven, March 2011

Estimating the Effective Dose from CT and CBCT scans

We can't measure the Effective Dose for every patient The SEDENTEXCT report doesn't cover every situation

SO

Use the DLP (if known)

or

Use the DAP (?accuracy)

Dose Length Product (DLP)

DLP = CTDIvol x Irradiated Length

Effective Dose = DLP x F (where F is a conversion factor)

- tables for F have been published
- works well for medical CT (± 40%)

Conversion Factor F

Tab. 3.1

Average values f_{mean} of conversion factor (in mSv/mGy·cm) to convert from dose free-in-air on the axis of rotation into effective dose for different regions of the body and patient groups (beam quality: 125 kV, 9 mm Al-equivalent); demarcation of the body regions was made according to (Hidajat96/2) (see also fig. 3.1 - 3.3).

Body region	Adu	ults	Children (7 year-old)	Babies (8	week-old)
	(female)	(male)	(female)	(male)	(female)	(male)
Head	0.0022	0.0020	0.0028	0.0028	0.0075	0.0074
Neck	0.0051	0.0047	0.0056	0.0055	0.018	0.017
Chest	0.0090	0.0068	0.018	0.015	0.032	0.027
Upper abdomen	0.010	0.0091	0.020	0.016	0.036	0.034
Pelvis (*)	0.011	0.0062	0.018	0.011	0.045	0.025
Entire abdomen (*)	0.010	0.0072	0.019	0.014	0.041	0.031

Table from "Radiation Exposure in Computed Tomography" edited by Hans Dieter NagelF can also by calculated from ImPACT CTDosimetry calculatorwww.impactscan.org

Roughly speaking, F = 0.002mSv / mGy.cm for Maxilla and 0.003mSv / mGy.cm for Mandible 2 µSv 3 µSv Accuracy: ±40%

Effective Dose for Medical CT Scanners

Patient ID : 15625528 Study ID : 6021 Patient's Birth Date : 1952.07.20 Sex : F Patient's Age : 58Y Image Comment : Study Date : 2011.06.30 Body Part : Contrast Enhance : NONE Contrast/Bolus Volume : Contrast density : Requesting Service : Referring Physician's Name : Name of Physician Reading Study : Operators Name : Total mAs in Study : 652 Total Scan time in Study . 10.85 Total DLP mGycm : 64.00 Total slice : 5 Scanning Sequence : HELICAL CT

Multiply DLP by 2 for Maxilla or 3 for Mandible Mx 128µSv BOUGHLY to get the Effective Dose in microSieverts (µSv)

Accuracy: ±40%

Dose Length Product (DLP)

DLP = CTDIvol x Irradiated Length

Effective Dose = DLP x F (where F is a conversion factor)

- most CBCT manufacturers don't display CTDIvol (exception: J.Morita, NewTom)
- CTDIvol = <u>Effective Dose</u>
 F x Irradiated Length
- Can use CTDIvol to interpolate published data

CBCT Scanners:

Effect of Reducing Beam Height

Scm	Full face 13cm height x 16cm diameter 83 micro Sieverts
Jam Bom	Both arches 8cm height x 16cm diameter 56 microSieverts
Scrit	Mandible 6cm height x 16cm diameter 45 micro Sieverts

Effective Dose is (roughly) proportional to the DLP

Effect of Reducing Beam Width

- Local Dose outside the imaged region is not zero
- Not clear that the Effective Dose is proportional to the DAP

Cone Beam Computed Tomography radiation dose and image quality assessments

Sara Lofthag-Hansen

Department of Oral and Maxillofacial Radiology Institute of Odontology at Sahlgrenska Academy

UNIVERSITY OF GOTHENBURG

Gothenburg 2010

Table 5. Most commonly used exposure parameters in three specified regions and corresponding dose-are product (DAP) value and effective dose according to ICRP 60 (1991)

Revion	Volume size	Tube voltage	Tube current	DAP value	Effective dose
8	(mm x mm)	(KV)	(mA)	(mGy cm [*])	(µSV)
Upper jaw					
Cuspid	30 x 40	80	5.0-6.0	263-316	21-25
-	40 x 40	75	4.0-5.0	260-325	21-26
	60 x 60	75	4.5-5.5	645-788	52-63
Lower jaw					
Second premolar-first molar	30 x 40	75-80	3.0-6.0	140-316	11-25
-	40 x 40	75	4.0-6.0	260-390	21-31
	60 x 60	75	5.0-6.0	716-859	57-69
Lower jaw					
Third molar	30 x 40	75-80	3.0-6.5	140-342	11-27
	40 x 40	75-80	4.0-5.0	260-366	21-29
	60 x 60	75-80	4.5-6.0	645-967	52-77

Effective Dose (μ Sv) = 0.1 x DAP (mGy.cm2) for Maxilla Effective Dose (μ Sv) = 0.15 x DAP (mGy.cm2) for Mandible Effective Dose (μ Sv) = 0.125 x DAP (mGy.cm2) for Mn & Mx

VERY ROUGH – USE WITH CAUTION!

Effective Dose Calculator

Siemens Sensation 64 (Ludlow)

Accuitomo F170 (SEDENTEXCT)

Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology

ORAL AND MAXILLOFACIAL RADIOLOGY Editor: Allan G. Farman

Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology

John B. Ludlow, DDS, MS, FDS RCSEd,^a and Marija Ivanovic, PhD,^b Chapel Hill, North Carolina UNIVERSITY OF NORTH CAROLINA

Siemens Sensation 64 (32 row / 64 slice) Both Jaws, 200 slices x 0.6 mm spacing Collimation 32 x 0.6 = 19.2 mm Effective mAs 90 (pitch = 0.9) Effective Dose 860 microSv

Dosimetry of dental CBCT

Presentation by Prof. Ria Bogaerts at SEDENTEXCT Workshop on dental Cone Beam CT Leeds, 31 March 2011

Workshop on dental Cone Beam CT

SEDENTEXOT

Effective dose for medium field CBCTs

Prof. Ria Bogaerts, Katholieke Universiteit Leuven, March 2011

Effective dose for small field CBCTs

Prof. Ria Bogaerts, Katholieke Universiteit Leuven, March 2011

DICOM headers for similar scans:

Accuitomo 10 x 10:

Accuitomo 4 x 4:

- kV: 90.0
- mA: 5.0
- EXPTIME: 17.5s
- PIXEL: 250.0um
- SliceInterval: 0.250mm
- CTDIw: 6.88mGy
- DAP: 1820mGycm2
- DLP: 68.8mGycm

- kV: 90.0
- mA: 5.0
- EXPTIME: 17.5s
- PIXEL: 80.0um
- SliceInterval: 0.250mm
- CTDIw: 4.57mGy
- DAP: 402mGycm2
- DLP: 18.3mGycm

Select Scanner 📿

26 Siemens Sensation 64

Maxilla & Mandible 260 Dental Region: Suggested Actual Voltage (kVp): 120 120 Exposure (mAs): 45 90 Pitch: 0.9 0.9 CTDIvol (mGy): 22.40 22.40 Slices: 200

0.3
120

BeamWidth:	19.20	19.20
Overrun (mm):	17.28	17.28
IrradiatedLength (mm):	137.28	137.28

DLP (mGy.cm):
Dose (microSv):
RawRisk (1 in N):

307.5	307.5
793	793
22136	22136

0.6

120

Age (years):
AgeFactor:
Risk (1 in N):

	60
.28	0.28
79058	80000

details

Select Scanner Q 44 J.Morita Accuitomo 170

Region:	Maxilla & Mandible		442 FOV	10cm
	Su	uggested	Actual	
Voltage (kVp):		90	90	
Exposure (mAs):		87.5	87.5	
Pitch:		0	0	
CTDIvol (mGy):		6.88	6.88	
Slices:			400	
Spacing (m	m):	0.25	0.25	
VisibleLeng	th (mm):	100	100	

Slices:		
Spacing (mm):	0.25	
VisibleLength (mm):	100	

BeamWidth:	
Overrun (mm):	
IrradiatedLength (mm):	

100.00	100.00
0.00	0.00
100.00	100.00

DLP (mGy.o	cm):
Dose (micro	Sv):
RawRisk (1	in N):

68.8	68.8
194	194
90637	90637

Age (years):
AgeFactor:
Risk (1 in N):

	60
.28	0.28
323703	300000

details

Select Scanner Q 44 J.Morita Accuitomo 170

Region:	Maxilla		445 FOV	4cm
	s	Suggested	Actual	
Voltage (kV	p):	90	90	
Exposure (n	nAs):	87.5	87.5	
Pitch:		0	0	
CTDIvol (m	Gy):	4.57	4.57	

Slices:		160
Spacing (mm):	0.25	0.25
VisibleLength (mm):	40	40

BeamWidth:	40.00	40.00
Overrun (mm):	0.00	0.00
IrradiatedLength (mm):	40.00	40.00

DLP (mGy.cm):	
Dose (microSv):	
RawRisk (1 in N):	

18.3	18.3
32	32
550272	550272

Age (years):		
AgeFactor:		
Risk (1 in N):		

	60
.28	0.28
1965258	2000000

Conclusions

- A knowledge-driven approach based on published data allows us to estimate
 Effective Dose and Risk for a number of makes and models of CT / CBCT scanners and a variety of scanning protocols
- Even if we don't have all of the information.

• Any Questions?