

CTUG Meeting

16th October 2014

Elaine Woods ^a, Jim O'Doherty ^a, Lucy Pike ^a, Ian Honey ^b, Sally Barrington ^a, Gary Cook ^a, Teresa Szyszko-Walls ^a and Paul Schleyer ^a

a. Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom

b. Department of Medical Physics, Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, London, United Kingdom

IIII IIII IIII KING'S HEALTH PARTNERS

Pioneering better health for all

CT in PET-CT

- Patients administered with tracer compound labelled with positron emitting radionuclide i.e. ¹⁸F-FDG
- Uptake period of 90 minutes in holding bay
- Patient has half-body CT scan (<1 minute) followed by half-body PET imaging (3 min/bed position ~ 21 minutes)

PET-CT Scanning

CT in PET-CT

		СТ	PET-CT	PET			
CT Prote	ocol				PET Protoco	ol	
mA	115	ATTA D			ARSAC Diagnostic	400MBa	
Rotation Speed	0.5s			A Star	Contraction of the second	(DRL) ¹⁸ F-FDG	40010104
Pitch	1.375			-	Effective Dose	8mSv	
Collimation	16 x 2.5mm	NO OF	19 0%				
CTDI _{vol}	5.2mGy		VaV				
CT Radiation do	se = 7mSv	63	63	32	PET Radiation do 350MBq ¹⁸ F-FDG	se for = 7mSv	

Aims

- PET Imaging Centre at St. Thomas' Hospital moved to new area in hospital in Oct 2013
- 2 x GE Discovery 710 PET-CT scanners (Optima 660 CT component)
- New scanners have mA modulation and statistical iterative reconstruction
- For optimisation of PET and CT protocols, institutional ethical approval obtained to perform patient local views on new scanners with patients receiving no additional radiation dose;

GE Smart mA

- CT tube current varies rotationally and longitudinally as patient is scanned to maintain image noise constant
- Parameters to set are minimum mA, maximum mA and Noise Index

GE ASiR (Adaptive Statistical Iterative Reconstruction)

- System noise statistics model applied to original projection data; Noise propagated through to iteratively reduce noise in reconstructed images.
- Statistical reconstruction is blended to various degrees with the original FBP reconstruction. GE recommend a setting of 40% ASiR blending, which theoretically enables a 40% dose reduction with no change in image noise.

Variation of measured image noise in water with % ASiR for a 50% reduced dose CT

A: Local view CT scans to determine optimum Noise Index (NI)

Patient local views (N=13) were scanned with the NI set to obtain a CTDI_{vol} value 50% that of the current protocol. All images were reconstructed using 40% ASiR.

A: Local view CT scans to determine optimum Noise Index (NI)

Patient local views (N=13) were scanned with the NI set to obtain a CTDI_{vol} value 50% that of the current protocol. All images were reconstructed using 40% ASiR.

B. Clinician review of Low Dose Scans

CT local views stored alongside several full dose FBP only CT images of patients of matched size and appearance. Images were scored blindly for image quality by 3 PET/CT clinicians, using scoring scale:

- 1 = non-diagnostic or unacceptable
- 2 = diagnostic but sub-optimal
- 3 = satisfactory
- 4 = good
- 5 = excellent

A: Local view CT scans to determine optimum Noise Index (NI)

Patient local views (N=13) were scanned with the NI set to obtain a CTDI_{vol} value 50% that of the current protocol. All images were reconstructed using 40% ASiR.

B. Clinician review of Low Dose Scans

CT local views stored alongside several full dose FBP only CT images of patients of matched size and appearance. Images were scored blindly for image quality by 3 PET/CT clinicians, using scoring scale:

C: Proposed protocol

The results from Part A and Part B were used to define a reduced dose CT protocol, and an additional 7 patients were scanned.

A: Local view CT scans to determine optimum Noise Index (NI) Patient local views (N=13) were scanned with the NI set to obtain a CTDI_{vol} value 50% that of the current protocol. All images were reconstructed using 40% ASiR. B. Clinician review of Low Dose Scans CT local views stored alongside several full dose FBP only CT images of patients of matched size and appearance. Images were scored blindly for image quality by 3 PET/CT clinicians, using scoring scale: **C: Proposed protocol** The results from Part A and Part B were used to define a reduced dose CT protocol, and an additional 7 patients were scanned. **D: Evaluation of Final Images**

The local views obtained in Part C were reviewed again by clinicians to assess the proposed protocol. Any variations/changes to the proposed protocol were discussed.

A: Local view CT scans to determine optimum Noise Index (NI) Patient local views (N=13) were scanned with the NI set to obtain a CTDI_{vol} value 50% that of the current protocol. All images were reconstructed using 40% ASiR. B. Clinician review of Low Dose Scans CT local views stored alongside several full dose FBP only CT images of patients of matched size and appearance. Images were scored blindly for image quality by 3 PET/CT clinicians, using scoring scale: **C: Proposed protocol** The results from Part A and Part B were used to define a reduced dose CT protocol, and an additional 7 patients were scanned. **D: Evaluation of Final Images** The local views obtained in Part C were reviewed again by clinicians to assess the proposed protocol. Any variations/changes to the proposed protocol were discussed. E: Clinical Implementation of New Protocol Scanning protocols changed on scanner. New temporary DRLs were set and staff received training in mA modulation/patient centering prior to first patient scans using new protocol.

Clinician Scoring of Part A Images

	Clinician A	Clinician B	Clinician C
Head and Neck 1	4	3	3
Head and Neck 2	4	3	4
Chest 1	4	4	5
Chest 2	5	4	3
Chest 3	3	3	2
Chest 4	3	2	3
Abdo 1	5	4	4
Abdo 2	4	3	3
Pelvis 1	4	3	2
Pelvis 2	5	3	3
Pelvis 3	4	2	3
Pelvis 4	4	3	4

Scoring Scale							
1 Non-diagnostic or unacceptable							
2 Diagnostic but sub-optimal							
3 Satisfactory							
4 Good							
5	Excellent						

Clinician Scoring of Part A Images

	Clinician A	Clinician B	Clinician C
Head and Neck 1	4	3	3
Head and Neck 2	4	3	4
Chest 1	4	4	5
Chest 2	5	4	3
Chest 3	3	3	2
Chest 4	3	2	3
Abdo 1	5	4	4
Abdo 2	4	3	3
Pelvis 1	4	3	2
Pelvis 2	5	3	3
Pelvis 3	4	2	3
Pelvis 4	4	3	4

	Scoring Scale							
1 Non-diagnostic or unacceptable								
2 Diagnostic but sub-optima								
3	Satisfactory							
4	Good							
5	Excellent							

None of the Part A local view images scanned at 50% dose were deemed 'non-diagnostic or unacceptable'

Weighted Kappa Test:

٠

٠

- Fair correlation between
 Clinician A and Clinician B,
 Fair correlation between
- Fair correlation between
- Clinician B and Clinician C
- No correlation between
- Clinician A and Clinician C.

Clinician Scoring of Part A Images

Scoring Scale							
1	1 Non-diagnostic or unacceptable						
2 Diagnostic but sub-optimal							
3 Satisfactory							
4 Good							
5	Excellent						

Diagnostic but sub-optimal: patients scanned with arms down, pacemaker artefacts, large patients

Clinician Scoring of Part A Images

• 'Matched' CT images

	Clinician A Scores		Cliniciar	n B Scores	Clinicia	n C Scores	
	Full Dose	50% Dose	Full Dose	50% Dose	Full Dose	50% Dose	
Chest	4	4	5	4	5	5	
Abdo	4	4	4	3	3	3	
Pelvis	4	4	4	4	4	4	
Head and Neck a)	4	4	4	3	4	3	
Head and Neck b)	4	4	4	3	5	4	

Scoring Scale						
1 Non-diagnostic or unacceptable						
2 Diagnostic but sub-optimal						
3	Satisfactory					
4	Good					
5	Excellent					

50% Dose

Proposed Protocol: Torso

- Mean GE Noise Index (NI) 50% dose reduction was **41** (1 S.D. = 6, Range 34 52)
- Proposed protocol:

Noise Index	40
Minimum mA	15
Maximum mA	100
Acquired Slice Thickness	2.5mm
Reconstruction	Std/40% ASiR

G Iball and D Tout, *Computed Tomography Automated Exposure Control Techniques in ¹⁸F-FDG Oncology PET-CT Scanning*, Nuc Med Comm 2014, Vol 35 No 4

Proposed Protocol: Torso

- Mean GE Noise Index (NI) 50% dose reduction was **41** (1 S.D. = 6, Range 34 52)
- Proposed protocol:

		200	GE AutomA	30	12				
Noise Index	40	800	 Philips ACS Philips DD0 	and ZDOM					
Minimum mA	15	(WD / 500	 Siemens Cr 	ARE Dose 4D		• • •	1	6.	
Maximum mA	100	400 400 300		-2		de la	-		
Acquired Slice Thickness	2.5mm	200			1. A.		it.		
Reconstruction	Std/40% ASiR	0	20	40	60 Weig	80 ht (kg)	100	120	140

 Protocol was tested on scanners without scanning for a selection of 11 patients. The mean displayed CTDI_{vol} (2.9mGy) represented a 45% dose reduction compared to the current fixed mAs protocol; mA saturated at 100mA for 8/11 patients;

Proposed Protocol: Torso

- Mean GE Noise Index (NI) 50% dose reduction was **41** (1 S.D. = 6, Range 34 52)
- Proposed protocol:

		GE AutomA 3D
Noise Index	40	800 + Philips ACS and ZDOM 700 + Philips DDOM
Minimum mA	15	600 Siemens CARE Dose 4D
Maximum mA	100	300
Acquired Slice Thickness	2.5mm	200
Reconstruction	Std/40% ASiR	0 20 40 60 80 100 120 144 Weight (kg)

- Protocol was tested on scanners without scanning for a selection of 11 patients. The mean displayed CTDI_{vol} (2.9mGy) represented a 45% dose reduction compared to the current fixed mAs protocol; mA saturated at 100mA for 8/11 patients;
- For remaining 4 torso local view patients, small patients (<50kg) were scanned.
- In evaluation of the final images, clinicians were satisfied with the image quality and therefore one protocol used for all patient sizes.

Proposed Protocol: Head and Neck

• Head and neck region represents a challenge to mA modulation.

- As 2/3 clinicians scored the reduced dose head and neck image quality down in the initial images, in second group of scans the Noise Index and minimum mA were varied to improve image quality.
- In clinician review of the final images, it was concluded that the mA modulation ASiR protocol would not be implemented for these scans.

Dose Reduction of New Protocol

DLP: Comparison of Protocols

• New Protocol (Range) • New Protocol (Mean) • Previous Protocol

	Old Protoc	ol	New Protocol			
	DLP (mGyc	m)	DLP(mGycm)			
Mean	486		302			
Std Dev	64 852 416 479		77			
Max			467			
Min			114 363			
Third Quartile						
Mean Dose Reduct	ion (range)	3	8% (4% - 77%)			

	Old Protocol		New Protocol	
	CTDI _{vol} (mG	iy)	CTDI _{vol} (mGy)	
Mean	5.2		3.2	
Std Dev			0.8	
Max			4.4	
Min			1.4	
Third Quartile			3.9	
Mean Dose Reduction (range) 38% (15%		8% (15% - 73%)		

National CT DRLs (2011) for chest abdo pelvis $CTDI_{vol}$ = 13mGy. Therefore PET-CT DRL is $\frac{1}{3}$ of diagnostic value.

Dose Reduction of New Protocol

- Dose received by a patient from a CT scan is dependent on both patient size and scanner radiation output. CTDI_{vol} provides information regarding only the scanner output so does not estimate radiation dose.
- US task group 204 developed conversion factors that can be applied to displayed CTDI_{vol} to allow estimation of radiation dose for various size patients.

Size Specific Dose Estimate (SSDE) = CTDI_{vol} x F

Dose Reduction of New Protocol

- Dose received by a patient from a CT scan is dependent on both patient size and scanner radiation output. CTDI_{vol} provides information regarding only the scanner output so does not estimate radiation dose.
- US task group 204 developed conversion factors that can be applied to displayed CTDI_{vol} to allow estimation of radiation dose for various size patients

Size Specific Dose Estimate (SSDE) = CTDI_{vol} x F

 $\left[\frac{1}{1000}\overline{CT(x,y)_{ROI}}+1\right]\frac{A_{ROI}}{\pi}$ $D_w = 2$

Dose Reduction of New Protocol

Dose Reduction of New Protocol

• With new protocol, doses for small patients are decreased the most

Image Quality of New Protocol

• Difference in noise measurements between old and new protocols is statistically significant (p<0.05)

Protocol for arms up/arms down

Patient Dose	Mean DLP (1 S.D.)		Mean CTDI _{vol} (1 S.D.)	
	Patient Arms Up	Patient Arms Down	Patient Arms Up	Patient Arms Down
Old Protocol	487 (65)	486 (65)	5.2 (0.0)	5.2 (0.0)
New Protocol	296 (79)	307 (76)	3.1 (0.8)	3.3 (0.7)

 Difference in dose metrics for arms up/arms down is not statistically significant (p=0.477 (DLP) /0.463 (CTDI_{vol}))

Phase 2: Head and Neck Local Views

Phase 2: Head and Neck Local Views

- An additional 5 patients had reduced dose head and neck local views (mA = 70, 40% ASiR reconstruction)
- Images scored by clinicians

	Clinician 2		Clinician 3	
	Full Dose (FBP)	40% Dose + 40% ASiR	Full Dose (FBP)	40% Dose + 40% ASiR
Head and Neck 1	4	4	5	5
Head and Neck 2	4	3	3	4
Head and Neck 3	3	3	5	4
Head and Neck 4	4	3	5	4
Head and Neck 5	4	4	4	3

Scoring Scale		
1	Non-diagnostic or unacceptable	
2	Diagnostic but sub-optimal	
3	Satisfactory	
4	Good	
5	Excellent	

Discussion

How do CT doses compare with other PET-CT Sites?

	Mean DLP (mGycm)	Mean Image Noise (HU)	Slice Thickness (mm)
St Thomas' PET Centre	302	27.1	2.5
Manchester/Leeds PET-CT 1 (GE)	306	22.4	3.75
Manchester/Leeds PET-CT 2 (Siemens)	197	42.1	4
Manchester/Leeds PET-CT 3 (Philips)	385	15.2	4
Manchester/Leeds PET-CT 4 (Philips)	296	19.7	4

G Iball and D Tout, *Computed Tomography Automated Exposure Control Techniques in 18F-FDG Oncology PET-CT Scanning*, Nuc Med Comm 2014, Vol 35 No 4

Discussion

How do CT doses compare with other PET-CT Sites?

	Mean DLP (mGycm)	Mean Image Noise (HU)	Slice Thickness (mm)
St Thomas' PET Centre	302	27.1	2.5
Manchester/Leeds PET-CT 1 (GE)	306	22.4	3.75
Manchester/Leeds PET-CT 2 (Siemens)	197	42.1	4
Manchester/Leeds PET-CT 3 (Philips)	385	15.2	4
Manchester/Leeds PET-CT 4 (Philips)	296	19.7	4

G Iball and D Tout, *Computed Tomography Automated Exposure Control Techniques in 18F-FDG Oncology PET-CT Scanning*, Nuc Med Comm 2014, Vol 35 No 4

CT for PET Attenuation Correction?

mAs	Activity Concentration (Bq/ml)
10	5767
15	5769
20	5769
25	5759
30	5762
35	5763
40	5763

Conclusions

- Mean effective half-body CT dose in PET-CT reduced to 4.2mSv. Therefore CT component is now ~38% of total PET-CT dose.
- Image Quality has received no complaints. Image noise measured in torso is lower than previous protocol.
- Possibility of reduction of mean effective head and neck CT dose from 1mSv to 0.6mSv.

Conclusions

- Mean effective half-body CT dose in PET-CT reduced to 4.2mSv. Therefore CT component is now ~38% of total PET-CT dose.
- Image Quality has received no complaints. Image noise measured in torso is lower than previous protocol.
- Possibility of reduction of mean effective head and neck CT dose from 1mSv to 0.6mSv.
- Other sites already have lower doses than us without ASiR. What image quality is deemed sufficient for localisation scans? Potential to go lower?
- All PET-CT scanner manufacturers have iterative reconstruction capabilities. Therefore further dose reduction in CT in PET envisaged in future.
- National dose audit would be extremely useful so as to know where we rank and what to aim for.

Full dose vs Reduced dose images?

21% Dose Reduction

Full dose vs Reduced dose images?

Full dose vs Reduced dose images?

40% Dose Reduction

Old Protocol