world class expertise 🔶 local care

NHS Foundation Trust

Optimisation of Toshiba Aquilion ONE Volume Imaging

Jane Edwards, RPRSG Royal Free London NHS Foundation Trust Dr Mufudzi Maviki, Plymouth Hospitals NHS Trust

Background

- In 2011/12 Radiology at RFH was redeveloped including the installation of three new CT scanners
- Pre 2011 we had a 4 slice GE scanner and a 64 slice Philips scanner
- We now have:
 - 2 Toshiba Aquilion ONE scanners (CT1 & CT3)
 - 1 GE HD 750 (CT2)

Volume Scanning with Aquilion ONE Scanners

- 320 detector rows of 0.5mm
- Capable of 16cm data acquisition in a single rotation
- CT3 is used as a dedicated cardiac scanner
- Volume imaging is routinely used at RFH for cardiac, sinuses and MSK imaging (hips, knees, ankles, hands)
- Also for routine brain scanning for agitated/uncooperative patients

Volume Brains Scans

- From the start the radiologists were unhappy with the image quality
- Some of this may be due to unfamiliarity with the scanner
- We had discussions with Toshiba and some improvements were made
- Radiologists still saw room for improvement with the imaging

NHS Foundation Trust

What were the issues

- Lots of artefact can be mistaken as clinical findings
- Images with high levels of noise
- Decreased grey-white matter contrast
- Decreased resolution (when compared to helical scans)

How come?

- Using a wide collimation means lots of scatter higher noise and decreased contrast
- It's a cone beam

ConeXact

→ row (z-axis)

The data density near the mid-plane (shown by red) is sparse compared to the periphery (shown by purple). More data gives better noise. Then, the mid-plane relatively has a worse noise than the others.

Courtesy of Toshiba Medical Systems

How come?

- Using a wide collimation means lots of scatter higher noise and decreased contrast
- It's a cone beam
- The patients often move

The images we started with

Plan of action

• We reviewed our protocol

	RFH Standard
Scan Type	Volume
Rotation Time (s)	0.5
Detector Configuration	320 x 0.5
Pitch Factor	N/A
kV	120
mA	500
^{SURE} Exposure	No
Scan FOV	240mm (s)
CTDIvol (mGy)	54.0

 We asked some other centres with Aquilion ONE Scanners

How we assessed image quality

• We got Terry involved....

First attempt

- First we tried the AAPM suggested protocol
- <u>http://www.aapm.org/</u> <u>pubs/CTProtocols/</u>

NOGRAM: Lateral and AP.					
TOSHIBA	Aq32	Aq64	AqPremium	AqONE	AqONE
Scan Type	Helical	Helical	Helical	Helical	Volume
Rotation Time (s)	0.75	0.75	0.75	0.75	0.75
Detector Configuration	32 x 0.5	32 x 0.5	32 x 0.5	32 x 0.5	320 x 0.5
CT Pitch Factor	Detail (0.656)	Detail (0.656)	Detail (0.656)	Detail (0.656)	N/A
Speed (mm/rot)	10.5	10.5	10.5	10.5	160
kV	120	120	120	120	135
mA	280	280	220	220	300
SUREExposure	No	No	No	No	No
Scan FOV	240mm (S)	240mm (S)	240mm (S)	240mm (S)	240mm (S)
Breath-hold	-				
Prep Delay (s)					
CTDI-vol (mGy)	71.5	71.5	55.7	55.7	60.0
RECON 1					
Туре	Axial	Axial	Axial	Axial	Axial
Start	Base of skull	Base of skull	Base of skull	Base of skull	Base of
End	Vertex	Vertex	Vertex	Vertex	Vertex
SURE IQ*	Head Brain	Head Brain	Head Brain	Head Brain	Head Brain
Thickness (mm)	5	5	5	5	5
Interval (mm)	5	5	5	5	5
DFOV (mm)	Patient	Patient	Patient	Patient	Patient
VOLUME					
Туре	Axial	Axial	Axial	Axial	Axial
Start	Base of skull	Base of skull	Base of skull	Base of skull	Base of
End	Vertex	Vertex	Vertex	Vertex	Vertex
SURE IQ*	Head Brain	Head Brain	Head Brain	Head Brain	Head Brain
Image Thickness (mm)	0.5	0.5	0.5	0.5	0.5
Reconstruction Interval (mm)	0.25	0.25	0.25	0.25	0.25
DEOV/ (mm)	Datient	Datient	Datient	Datient	Dotient

Protocols

	AAPM Suggested	RFH Standard
Scan Type	Volume	Volume
Rotation Time (s)	0.75	0.5
Detector Configuration	320 x 0.5	320 x 0.5
Pitch Factor	N/A	N/A
kV	135	120
mA	300	500
^{SURE} Exposure	No	No
Scan FOV	240mm (s)	240mm (s)
CTDIvol (mGy)	60.0	54.0

RECON 1

Туре	Axial	Axial
Start	Base of skull	Base of skull
End	Vertex	Vertex
SUREIQ	Head Brain	Head Brain
Image Thickness (mm)	5	5
Reconstruction Interval (mm)	5	5

VOLUME RECON

Туре	Axial	Axial
Start	Base of skull	Base of skull
End	Vertex	Vertex
SUREIQ	Head Brain	Head Brain
Image Thickness (mm)	0.5	0.5
Reconstruction Interval (mm)	0.25	0.5

AAPM Protocol Image

Plan of action

- We tried acquiring images with different:
 - kVs
 - Reconstruction Algorithms
 - Reconstructed Slice Thickness
 - Iterative Reconstruction Levels

Plan of action

• We also compared to the helical protocol.....

	RFH Standard
Scan Type	Helical
Rotation Time (s)	0.75
Detector Configuration	0.5 x 32
Pitch Factor	Detail (0.656)
kV	120
mA	Auto (Max = 230)
^{SURE} Exposure	Standard (SD=2)
Scan FOV	240mm (s)
CTDIvol (mGy)	45.0

- Helical scans are fine focus, volumes are broad focus
- Determined by the output power of your protocol

Method

- Weekly optimisation session on CT3
- Constant CTDI across all images only one parameter was varied at one time
- 'Standard' volume image was included in all imaging sets as a reference
- CNR and SNR measurements performed by physics
- Phantom images anonymised and independently scored by two radiologists

Method

- Regular feedback between physics and radiologists
- The winning image each week was used as a starting point for the next round of optimisation

- CNR and SNR analysis performed at several points in each series
- Grey matter, brainstem, ventricles and CSF spaces used as reference points
- Analysis preformed with IQ Works to ensure consistent placement of ROIs
- Phantom images ranked by radiologists and reasons for decisions collated

Results – Changing kV

		CNR		
kV	CTDI (mGy)	Ventricle vs Grey Matter	CSF Spaces vs Grey Matter	
80	49.6	6.59	2.68	
100	51.6	6.73	2.75	
120	51.4	7.30	2.61	
135	54.7	5.78	2.52	

		CNR
kV	CTDI (mGy)	Brainstem vs Grey Matter
80	49.6	0.36
100	51.6	1.18
120	51.4	1.24
135	54.7	1.34

		CNR		
kV	CTDI (mGy)	Ventricle vs Grey Matter	CSF Spaces vs Grey Matter	
80	49.6	3.68	4.84	
100	51.6	4.11	4.21	
120	51.4	3.92	4.43	
135	54 7	3 78	4.05	

Results – Recon Algorithm

What the radiologists thought

Visual Image quality Assessment

Imaging set 1: Filter FC62.

	80KV	100KV	135KV
Doctor A	3	1	2
Doctor B	3	1	2

Comments: 80kv images too dark within posterior fossa and vertex. 135 kv too bright with glare. 100kv ok compromise, a little in the dark post fossa.

Imaging set 2: Filter FC62

	80	100	120	135
Doctor A	4	2	1	3
Doctor B	4	2	1	3

Imaging set 3: Filter FC64

	80	100	120	135
Doctor A	4	2	1	3
Doctor B	4	1	2	3

Comments: Too much posterior fossa artifact on all images.

Imaging set 4: Filter FC67.

	100	120	135
Doctor A	3	1	2
Doctor B	3	1	2

Artefact at the orbits and anterior cranial fossa.

120 KV

	FC62	FC64	FC67
Post Fossa	2	3	1
Basal Ganglia	2	3	1
Superior cortex	2	3	1

FC67 had sharper images, more aesthetically pleasing. FC64 has too much artifact.

world class expertise 🔶 local care

120kV appears the best IQFC67 or FC68 are the optimal algorithms

Results – Other stuff

- The change in iterative reconstruction (AIDR Strong) gave the most pronounced improvement when reviewed by the radiologists
- The fine focus scan was a close second

			CNR
Scan	CTDI (mGy)	Ventricle vs Grey Matter	CSF Spaces vs Grey Matter
Standard	49.6	7.30	2.61
Overlapping Acquisition	49.6	6.52	2.58
AIDR Strong	49.6	7.30	2.68
Fine Focus	49.6	6.73	2.82

Psychology of Imaging

- Does the order in which images are presented have an effect on the outcome?
- Probably.....

NHS Foundation Trust

Psychology of Imaging

world class expertise 💠 local care

NHS Foundation Trust

Helical Image Quality

- We tried a similar strategy with the helical images
- The results were very different what improves the volume scans does not apply to the helical scans

Toshiba Medical Systems

Comparison

	Chang	ing kV	Recon A	gorithm
Ranking	CNR Results	Radiologists Opinion	CNR Results	Radiologists Opinion
1	80	120	FC64	FC67
2	100	100	FC68	FC68
3	135	135	FC62	FC62
4	120	80	FC67	FC64

Conclusions

- Improved CNR doesn't mean better clinical image
- The clinical task is the more important measure of IQ
- The order images are displayed may influence your results
- Volume acquisitions have their uses for head imaging but may require higher doses than helical techniques
- The radiologist involved leaving before completion of the project affects what you can achieve!

Further Work

_	Change	e of CT Protocol Fo	orm
Sc	anner: CT 1	CI2 CI3 (highlight a	appropriate equipment)
Scan protocol:			
Reason for			
change			
Requester			
Curre	nt Protocol	Amende	d Protocol:
mAs		KV mAs	
Rotation Time (s)		Rotation Time (s)	
Pitch		Pitch	
Slice Thickness (mm)	-	Slice Thickness (mm)	
Dose Modulation		Dose Modulation	
used?		used?	
Standard deviation		Standard deviation	
(Tosh Only)		(Tosh Only)	
Curre	nt Protocol	Amende	d Protocol:
Curre Effective Dose (៣६४)	nt Protocol	Amende Effective Dose (៣६४)	d Protocol:
Curre Effective Dose (mSx) Medical Physics: Op	nt Protocol	Amende Effective Dose (<u>MSX</u>) I patient dose information s Date	d Protocol:
Curre Effective Dose (mSX) Medical Physics: Op Curre	nt Protocol	Amende Effective Dose (mSx) d patient dose information s Date	d Protocol:
Curre Effective Dose (m§x) Medical Physics: Op Curre Filter (Recon	nt Protocol timisation advice and trotocol	Amende Effective Dose (mSx) d patient dose information s Date Amende Filter (Recon	d Protocol:
Curre Effective Dose (<u>MSX</u>) Medical Physics: Of Curre Filter (Recon Algorithm)	nt Protocol timisation advice and trinisation advice and	Amende Effective Dose (m&x) I patient dose information s Date	d Protocol:
Curre Effective Dose (msx) Medical Physics: Of Curre Filter (Recon Algorithm) Reconstruction and	nt Protocol timisation advice and nt Protocol nt Protocol	Amende Effective Dose (mSx) d patient dose information s Date	d Protocol:
Curre Effective Dose (mSx) Medical Physics: Oj Curre Filter (Recon Algorithm) Reconstruction and Storage changes	nt Protocol	Amende Effective Dote (msv) d patient dose information s Date Piter (Recon Agorithm) Storage changes	d Protocol:
Curre Effective Dose (mSX) Medical Physics: O Curre Filter (fecon Algorithm) Beconstruction and Storage changes Other	nt Protocol	Amende Effective Dose (ŋ5x) á patient dose information s Date Piter (Recon Algorithm) Réconstruction and Storage changes Other	d Protocol:
Curre Effective Dose (m5x) Medical Physics: Of Effective Curre Filter (Recon Agorithm) Reconstruction and Storage changes Other	nt Protocol ttimisation advice and rtProtocol il agree to the above	Amende Effective Dote (mSx) d patient dose information s Date Piter (Recon Algorithm Algorithm Other Other changes and justify any cha	d Protocol: upplied by d Protocol:
Curre Effective Dose (m&v) Medical Physics: Op Curre Filter (Recon Algorithm) Reconstruction and Storage changes Other	nt Protocol	Amende Effective Dote (mSx) d patient dose information s Date	d Protocol:
Curre Effective Dose (máx) Medical Physics: Of Curre Filter (fecon Algorithm) Reconstruction and Storage changes Other	nt Protocol	Amende Effective Dote (m5x) d patient dose information s Date Pitter (Recon Algorithm) Reconstruction and Storage changes Other Other Date Superintendent	d Protocol:
Curre Effective Dose (m&v) Medical Physics: Op Piter (Recon Piter (Recon Reconstruction and Storage changes Other IRMER Practitioner Amendments agree	nt Protocol timisation advice and nt Protocol	Amende Effective Dote (mSx) d patient dose information s Date	d Protocol:

- •Change of Protocol to be completed
- •Document to be produced outlining the changes we have made
- •Continue with Volume imaging

Further Work

- Assess helical image quality
- Move to looking at other volume imaging
- Extend the project to look at other body parts cardiac, c-spines

Any questions