

Leeds Lung Health Check – Protocols, QA & Optimisation

Gareth Iball & Charlotte Beeching

CT Users Group, Birmingham, 3rd October 2019

The Leeds Teaching Hospitals NHS Trust

Lung Cancer in Yorkshire

Lung Ca. rate in Yorkshire 78.8/100,000 vs. 66.6 in England

Largest cause of premature death in Leeds

Leeds West and South & East CCGs in 4 highest for incidence and mortality rates

Yorkshire Lung Screening Trial

55 – 80 year olds – ever smokers 1:1 randomisation – screening : no screening

Screening arm:

- Two Lung Health Checks (inc. CT screens) at 2 yr interval
- Community based screening mobile CT
- Surveillance program for identified nodules etc.
- Additional 5th year surveillance
- Estimate ~7000 persons having biennial screening

Mobile CT

- Provided by Alliance Medical
- Canon Aquilion PRIME SP
- LTH acting as MPE for Trial

Scan protocols

AML proposed scan protocols

	<5	i0 kg	50 – 8	30 kg	>80) kg
kV	100		120		135	
mA		70	70		70	
Tube Rotation (s)	0.5		0.5		0.5	
Sure Exposure (AEC)?	No		No		No	
AIDR 3D?	No		No		No	
Beam Collimation	0.5 x 80		0.5 >	k 80	0.5	x 80
Reconstructed Slice	2.0 / 1.0		2.0 /	1.0	2.0	/ 1.0
(mm)						
Speed / Pitch	0.813	65.0	0.813	65.0	0.813	65.0
Algorithm / Filter	FC18 (Soft Tissue) / FC51 (Lung)					

AAPM scan protocols

"Set of reasonable scan protocols developed by AAPM Working Group"

https://aapm.org/pubs/CTProtocols/documents/LungCancerScreeningCT.pdf V5.1 September 2019

Suggested protocols for most current scanners

Missing detail – no info on recon kernel for Canon scanners

Lung Cancer Screening CT (selected Canon scanners)

•	U				
CANON	Aq RXL	Aq Lightning (16 Rows)	Aq Lightning (80 Rows)	Aq PRIME (40 Rows)	Aq PRIME (80 Rows)
Scan Type	Helical	Helical	Helical	Helical	Helical
Rotation Time (s)	0.5	0.75	0.75	0.35	0.35
Detector Configuration	16 x 0.5 mm	16 x 1.0 mm	80 x 0.5 (mm)	40 x 0.5 mm	80 x 0.5 mm
Pitch	Fast (1.434)	Fast (1.438)	Standard (0.813)	Standard (0.825)	Standard (0.813)
kV	120	120	120	120	120
Minimum & Maximum mA	Min mA = 20 / Max mA = 110	Min mA = 10 / Max mA = 300	Min mA = 10 / Max mA = 300	Min mA = 20 / Max mA = 120	Min mA = 20 / Max mA = 120
^{SURE} IQ Setting	Body Std Axial (5 mm Target Slice)				
^{SURE} Exposure	ON	ON	ON	ON	ON
SD	25	20*	20*	25*	25*
**CTDIvol	1.8			1,8	1.8

Scanogram: PA and LAT dual Scanogram; scan from top of shoulder through mid-liver.

* Create a new SureExp setting using Body Std Axial SureIQ with 5 mm Target Slice and the given SD, min and max mA values.

** For standard sized patient, defined as 5'7", 155 pounds. Do not adjust the SD as patient size varies. SureExposure modulates mA automatically based on patient size.

Recon 1 - Axial Soft Tissue

Туре	Axial	Axial	Axial	Axial	Axial	
SUREIQ Setting	Body Std Axial					
AIDR 3D	AIDR 3D STD					
Thickness (mm)	1	1	1	1	1	
Interval (mm)	1	1	1	1	1	
Recon 2 – Axial Lung						
Туре	Axial	Axial	Axial	Axial	Axial	
SUREIQ Setting	Lung Std Axial					
AIDR 3D	AIDR 3D STD					
Thickness (mm)	1	1	1	1	1	
Interval (mm)	1	1	1	1	1	

Lungman to the rescue! – Trial – 7 days...

- Scan Lungman on existing and AAPM protocols
 - With and without body plates
- Radiologist image review
 - Only one question:
 - Are images suitable for Trial?

Lungman ~55kg equivalent

Resulting doses

	Lungman	Lungman + body covers
Protocol	CTDIvol (mGy) / DLP (mGycm)	CTDIvol (mGy) / DLP (mGycm)
AML <50kg	1.2 / 40.9	-
AML 50-80kg	2.2 / 74.8	-
AML >80kg	3.2 / 106.8	3.2 / 104.9
AAPM	0.6 / 20.3	1.3 / 44.9

AAPM protocols look more sensible from a dose perspective

The Leeds Teaching Hospitals

Radiologists happy with images from AAPM protocol – all phantom sizes

RSNA QIBA

Quantitative Imaging Biomarkers Alliance

QIBA Mission: Improve the value and practicality of quantitative imaging biomarkers by reducing variability across devices, sites, patients, and time

<u>qibawiki.rsna.org</u>

QIBA Profile:

Small Lung Nodule Volume Assessment and Monitoring in Low Dose CT Screening

Image Quality Markers

Edge enhancement – shall not exceed 5%

Spatial warping – 3D image acquisition results in Spatial warping of less than 0.3mm Root Mean Square Error **3D resolution -**A 3D PSF sigma ellipsoid volume of less than or equal to 1.5mm³

3D resolution aspect ratio

A Z PSF sigma less than two times larger than the inplane PSF sigma

HU bias – CT HU value deviation of less than 35 HU for Air and Acrylic materials Noise – a standard deviation that is <= 50 HU for homogeneous Air and Acrylic materials

Accumetra CTLX1 phantom

- Three modules placed at 0mm, 102mm, and 204mm from isocentre
- Each module is hollow cylinder of Delrin
- Air region inside and outside cylinder
- Teflon cylinder and Acrylic cylinder above and below Delrin respectively

Unique phantom looks at performance across imaged field

Leeds is first site in the world to use this phantom on a mobile CT scanner

CTLX1 scanning – Trial -7 days...

- Scanned on AML & AAPM protocols
- Online analysis of images
 - Failed on all protocols

(1) Edge Enhancement

(4) 3D Resolution Aspect Ratio

Protocol edit

• Advice from Canon & Accumetra re: recon kernel for lung recon.

Protocol edit – Trial -1 day...

- Return to scanner day before Trial starts
- Amend scan protocol (FC 5)
- Re-scan Lungman
 - Images to Radiologist
 - Are images ok for the trial?
- Re-scan CTLX1
 - Upload for analysis

Lastminute.com

In-plane edge enhancement can significantly modify the HU values of objects in CT images and cause problem with quantitative measurement algorithms We quantitatively tested your levels of edge enhancement at three distances fro iso-center and found the values to be within QIBA CT SLN Profile specifications	In-Plane Edge Enhancement
--	---------------------------

(4) 3D Resolution Aspect Ratio

Lastminute.com

Conformance Assessment Status

The required number of CTLX1 phantom modules were found (3).

The DICOM slice thickness is within acceptable limits for this analysis (<= 1.25mm).

The DICOM slice spacing is within acceptable limits for this analysis (<= slice thickness).

All QIBA CT SLN Profile automated conformance checks have passed for this CT scanner and image acquisition protocol.

Lastminute.com

Radiologists happy with IQ

Images quite different from normal HRCT

Trial image – Canon Prime SP

Follow up HRCT image – GE Revolution GSI

Trial so far

Trial started 6th Nov 2018

3048 patient scans to date

Rounds 1 – 8

2018 patient scans

31 confirmed cancers (others being followed up)

Ca. detection rate at least 1.5%

c.f. ~0.9% in Breast Screening in 2015/16

Demographics

11 rounds completed – 3048 scans

54%:46% M:F ratio

	Age (yr)	Weight (kg)	Height (cm)	BMI (kg/m²)
Min	55.0	35.0	101.5	15.6
Mean	68.1	79.2	165.8	28.6
Median	68.0	77.5	166.0	28.0
Max	83.0	184.0	196.0	78.6

BMI range	Percentage
Underweight	0.6
Normal Weight	26.4
Overweight	38.2
Obesity	22.9
Severe Obesity	11.7

Patient doses

	CTDIvol (mGy)	DLP (mGycm)	Effective dose (mSv)	Scan length (cm)
Min	0.40	15.80	0.43	28.2
Mean	1.20	44.95	1.21	37.4
Median	1.10	42.70	1.15	37.4
Max	2.70	115.0	3.11	49.2

E/DLP = 0.027mSv/mGycm

The Leeds Teaching Hospitals NHS Trust

The Leeds Teaching Hospitals NHS Trust

Dose & image quality summary

- "Happy" with doses & quality
- Suspect we could lower dose
 - Never sought to optimise, just to get acceptable IQ and pass QIBA standard
 - Could look to do this for 2nd screen (T2)
 - Further Lungman scans
 - Repeat CTLX1 analysis

What has gone wrong?

- Two CQC reportable incidents
 - Radiographers adjusted AEC for large patients
 - Received 3-4 times intended dose

- Scanner software upgrade
 - Protocol lost
 - Not backed up prior to upgrade
 - Had to be rebuilt on 1st morning of a screening visit

Routine QA check

- CTLX1 scan performed on 1st morning of each screening round
- Check before any patients scanned
- Ideally upload and analyse images whilst still on site

QA issues

- CTLX1 QA failed on 1st morning
 - Weekly air calibration not performed
 - Passed after calibration
 - Highlighted importance of weekly air calibration

QA issues

- Wrong kernel
 - When protocol re-built, recon defaulted to FC 13, not FC 5

Some other unexplained variations in CTLX1 results – under investigation

Summary

- Major lung screening trial in Leeds
- Set up specific clinical scan protocols
 - Further optimisation possible?
- Novel QA process in place

- Company further developing phantom and analysis routines
- IMHO National Lung Screening Programme likely to happen
 - Need to get Physicists together to set up standards as per Breast Screening Programme