Comparison of different methods for calculation of patient effective dose from multiple CT examinations

Iliya Dyakov, Simona Avramova-Cholakova, James O'Sullivan

simona.avramova-cholakova1@nhs.net

Introduction

- Effective dose (*E*) created to provide a dose quantity linked to health detriment due to stochastic effects
- Well known that *E* is related to many uncertainties and not applicable to individual patients
- Intended for use in RP and assessment of risks in general terms
- However E is extensively applied to medical exposure and in some cases for individual patients (e.g. when estimating unintended exposre) Martin 2007,

Martin 2008

NHS Trust

Imperial College Healthcare

S. Avramova-Cholakova

Introduction

Recent publications reveal many patients receive recurrent CT exposures with cumulative E (CED) \geq 100 mSv

European Radiology https://doi.org/10.1007/s00330-019-06551-8	European Radiology	European Radiology	
COMPUTED TOMOGRAPHY	https://doi.org/10.1007	https://doi.org/10.1007/s00330-019-06528-7	
	COMPUTED TON	MOGRAPHY	
Patients undergoing recurrent CT exams: assessment of with non-malignant diseases, reasons for imaging and imaging appropriateness	of pati Multination from recurr	Multinational data on cumulative radiation exposure of patients from recurrent radiological procedures: call for action	
Madan M. Rehani ¹ · Emily R. Melick ¹ · Raza M. Alvi ¹ · Ruhani Doda Khera ¹ · Sa Tomas G. Neilan ¹ · Michael Bettmann ³	Ima Bator Marco Brambilla	¹ O • Jenia Vassileva ² • Agnieszka Kuchcinska ³ • Madan M. Rehani ⁴	
ropean Radiology ps://doi.org/10.1007/s00330-019-06523-y		Contents lists available at ScienceDirect	
COMPUTED TOMOGRAPHY	-26	Physica Medica	
atients undergoing recurrent CT scans: assessing the m	ELSEVIER a	journal homepage: www.elsevier.com/locate/ejmp	
adan M. Rehani ¹ () • Kai Yang ¹ • Emily R. Melick ¹ • John Heil ² • Dušan Šalát ³ • Willi	Technical note an Estimates of the r	number of patients with high cumulative doses through	
	recurrent CT exar	rrent CT exams in 35 OECD countries	

Received: 11 July 2019 / Revised: 19 September 2019 / Accepted: 17 October 2019 C European Society of Radiology 2019

Madan M. Rehani^{a,*}, Michael Hauptmann^b

Introduction

- A group of 8952 patients, with mean of 21 and a max of 109 CT scans during 5-y period, CED from 100 to 1185 mSv Rehani 2019
- UK the estimated number of patients with CED \ge 100 mSv in 5-y period is 70,499 ; 35 countries – 2.5 million patients with CED \ge 100 mSv in 5-y period against a population of 1.2 billion Rehani 2019
- Proven cancer risks at these dose levels; a recent review article suggests proven excess cancer risk even below 100 mGy
- Awareness of the impact of different methods Hauptmann 2020 for calculation of *E* needed

Aim

 To compare different methods for effective dose estimation of patients that have undergone several CT examinations with a CED of 100 mSv and above

- Optima 660 (GE) CT scanner
- Patient data retrospectively extracted with DoseWatch
- Firstly, patients exposed to $CED \ge 100 \text{ mSv}$ identified
- Then, 10 patients with effective diameter close to the median value (265 mm) of the whole sample selected
- Scan ranges based on anatomical landmarks checked on PACS for each phase
- 12 different methods for calciulation of *E* applied
- *E* from different phases summed to obtain exam *E*
- All methods considered based on ICRP 103 w_{T}

NHS Trust

Imperial College Healthcare

- 1. E_{tot} total exam DLP as provided by DMS x k
- 2. E_k phase DLP x k
- 3. $E_{Shrimpton}$ typical published *E* values for the exams considered

- 4. E_{typ} typical department DLP (median) x k
- 5. E_{typ} CT Expo typical CTDI
- 6. E_{typ} CT Expo typical DLP

- 7. E CT Expo phase CTDI
- 8. E CT Expo phase DLP
- 9. E ImPACT phase CTDI
- 10. E ImPACT phase DLP
- 11. E NCI phase CTDI
- 12. E NCI phase DLP

6.2

120

100

6.2

62

9.9

Scan Coverag

Scan Start (cm)

Scan End (cm)

10

Scan Length (cm)

10

Predefined protoco

NHS Trust

NHS

8

Head

lealthcare

• Typical published *E* values and conversion coefficients *k* based on: Shrimpton *et al.* Updated estimates of typical effective doses for common CT examinations in the UK following the 2011 national review. *Br J Radiol* 2016; 89: 20150346.

Examination	E/DLP (mSv/mGy cm)	E ₁₀₃ (mSv)
Chest	0.027	14
СТРА	0.027	9.7
Abdomen	0.024	16
Abdomen&Pelvis	0.02	13
Chest&Abdomen	0.0255	15
Pelvis	0.02	13
Chest-Abd-Pelvis	0.021	19
KUB	0.018	6.4
Head	0.002	1.8
Cervical Spine	0.0057	3

• 5 males & 5 females

Sex	Mean (range) weight (kg)	Mean (range) height (cm)	Mean (range) eff. diameter (mm)
Males	80 (70-113)	174 (160-193)	277 (246-315)
Females	68 (59-75)	163 (153-166)	269 (233-341)

- Oncology patients, mostly receiving 2 or 3 phase CAP exams
- The % difference between *E* determined based on CTDI or DLP approach used in the software packages varied between -1.7 % and 3.5 %

S. Avramova-Cholakova

Imperial College Healthcare NHS Trust 12

Imperial College Healthcare NHS Trust 13

Imperial College Healthcare NHS Trust 14

Imperial College Healthcare

Conclusions

- Although effective dose estimation is not recommended for individual patients, this is sometimes needed in clinical practice
- It is highly dependent on the method used
- CED estimations can differ up to 4-5 times or maybe more
- The large uncertainties related to these estimations should always be taken into account

Thank you for your attention!

