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CT and Stroke Diagnosis

Why are suspected 
stroke patients 
given a Brain CT?

What are some 
indications of 
stroke?

Brain scans determine:
• The region of the brain 

affected
• The severity of the stroke 
• Whether the stroke is 

ischaemic or haemorrhagic.

• Loss of normal gray-white 
matter differentiation.

Relative to normal tissue:
• Ischaemic brain parenchyma is 

hypoattenuating.

Why is accurate 
diagnosis critical?

• Dictating appropriate 
treatment.
➢ e.g., patients with large 

infarcts as they are less 
likely to benefit from 
thrombolysis 

Why is low 
contrast 
detectability 
(LCD) important 
in stroke 
diagnosis?

• LCD describes the ability to 
distinguish between regions on a 
CT image that have similar x-ray 
attenuation characteristics. 



Purpose

•Radiologists at the Mater have been concerned with 
inconsistencies in Brain CT image quality.

•Medical Physics was tasked with investigating the 
differences in protocols in feeder hospitals.

•Brain CTs are the most common CT examination in the UK 
and Rep. of  Ireland.[1]

➢ Is there a significant variation?

➢ Given the ubiquity of Brain CT, should image quality be standardised?



• We aimed to:

➢ Develop an objective method of measuring LCD in CT scans.

➢ Identify which combination of CT acquisition parameters maximises the ability to 
detect these small changes in attenuation.

➢ Investigate the variation in imaging protocols for suspected acute stroke at 
different institutions in the regional hospital network.

• Even to the untrained eye, 
differences in image quality can 
be seen… 

Purpose

Better grey-white 
matter differentiation



Background Theory

• First proposed by Chao et. al.[2] and later described 
by Hseih.[3]

• Take a uniform image with an attenuator 
approximately equivalent to a typical patient. 
Suppose there were a small low contrast target in the 
attenuator.

• Take an ROI in the image identical to that low contrast 
object. The pixel values would have a Gaussian 
distribution, with a mean pixel value µT and a 
standard deviation σT. 

• Similarly, taking an ROI of  the same size of  the 
background, the pixel values would also follow a 
Gaussian distribution, with mean pixel value µB and a 
standard deviation σB.



Background Theory

• Both distributions are similar in shape, just 
separated by the difference in their respective 
mean pixel values. 

• Statistically, if  two Gaussians distributions are 
separated by 3.29σ, the distributions can be 
distinguished at a 95% level of  confidence. 

• This implies that we do not actually need a physical 
target in the phantom. 

• Calculating the parameters of  the Gaussian 
distribution of  the background pixel values i.e., the 
mean and standard deviation is enough to generate 
a “virtual” target in the background. 



Experimental Set-up

• Uniformity module (CTP486) of  the CATPHAN® 
600 CT phantom was used to acquire uniform 
images. 

• A bespoke, 3D printed calcium-like (ZP151® 
composite) annulus, 7 mm thick was placed 
around the CATPHAN® to simulate beam 
hardening due to the skull. 

• The CATPHAN® was set-up at the head of  the 
patient bed as per routine quality assurance 
tests.

• Radiographers were asked to use the same 
protocol as for a suspected stroke patient.



Algorithm used

• A central square ROI, approx. 100 x 100 pixels was 
selected for analysis.

• The sub-region is divided up into a number of  “blocks”, 
each of  area (np)², where n is an integer and p is the 
pixel size. 

• The mean pixel value of  each block (µBLOCK) is 
calculated. According to the Central Limit Theorem, 
provided that at least 30 values of  µBLOCK are obtained, 
the distribution of  µBLOCK values will be Gaussian. 

• A MATLAB™ program was developed to calculate the minimum signal 
difference in Hounsfield Units (HU) required to distinguish an object from 
the background.

• Five slices from the uniformity section of  the CATPHAN were analysed.



Algorithm used

• The standard deviation of  this distribution, σµBLOCK
is used to calculate signal 

difference. The area of  the block, (np)², is converted into a disc of  equal area. 
This process is repeated for increasing n. 

• Minimum contrast necessary 
for conspicuity is defined as 
the signal difference and is 
equal to 3.29σµBLOCK

. 

• Five contrast-detail curves are 
averaged to give statistical 
contrast as a function of  
equivalent disc diameter in the 
form of  a contrast-detail curve.



Results

(a) A lower AuC for 120 kV indicates better LCD for higher kV when all other parameters are 

kept constant. (b) Increasing LCD for higher mAs. (c) Higher levels of  iterative 

reconstruction give better LCD, in particular, for small target objects. (d) Improved LCD for 

thicker slices.

Data taken from a Siemens Somatom Definition AS+ scanner.

(a) (b) (c) (d)



Results

(a) mAs would have to be increased by ≈ 175 mAs to achieve same AuC as using maximum SAFIRE.

(b) Lower AuC can be achieved with reduced dose if  SAFIRE level is increased.

Data taken from a Siemens Somatom Definition AS+ scanner.



Results

Contrast-detail curves of  stroke CT protocols from 

13 scanners across 7 hospitals.



Results



Parameter Optimization

• In a study in 2019, Nakamura et. al., showed the potential for 
improving low contrast detectability by reducing the kV, while 
simultaneously increasing mAs to compensate for a reduced dose to 
the detector.[4]

• We attempted to replicate these results using our objective technique.

kV = 120
mAs = 500

CTDIvol = 83.5 mGy
CNR = 1.77

kV = 100
mAs = 850

CTDIvol = 86.9 mGy
CNR = 2.06

kV = 100
mAs = 750

CTDIvol = 64.8 mGy
CNR = 2.15

+ Iterative Reconstruction



Parameter Optimization

• 4 acquisitions taken at our hospital:

kV = 120
mAs = 456*

J30s/2

kV = 120
mAs = 456*

J30s/5

kV = 120
mAs = 850

J30s/5

kV = 100
mAs = 750

J30s/5

kV = 100
mAs = 850

J30s/5

kV = 120
mAs = 850

J30s/2

kV = 100
mAs = 750

J30s/2

kV = 100
mAs = 850

J30s/2

* mAs selected by Siemens CARE Dose for the set-up shown earlier.



Parameter Optimization



Parameter Optimization

• For the same dose, the 100 kV, 750 
mAs protocol with stronger levels of  
IR, gives a better LCD than the 
current protocol. 

• If  we allow ourselves to increase the 
dose, the lowest (and therefore, best) 
FoM is obtained for the 100 kV, 850 
mAs, SAFIRE 5 protocol. 

• A higher FoM for the 120 kV, 850 mAs 
protocol shows that eventually there 
is diminishing returns in increasing 
the dose to improve image quality.

Clinical trial has been delayed 
due to COVID-19. 

100 kV, J30s\5, with a ref. mAs 
that keeps the same CTDIvol as 

before.



• Traditionally, discussion of  image quality has 
focused on reducing dose while maintaining LCD, 
rather than maximising the latter.
➢ We believe this is a philosophy worth challenging.

Image Quality vs. Radiation Dose

70% of Stroke patients 
experience significant 
degree of lasting 
impairment.[5]

Average age of 
ischaemic stroke 
= 74.6 years[6]

Risk of radiation-
induced cancer 
decreases with 
age.[7]

Brain is 
relatively 
radioresistant.[8] LCD vs. Dose: Which consideration 

should be given more weighting?



Reference LCD Curves?
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Threshold gold thickness, T

Φ (mm) Tmeasured (µm) Tmin (µm) Tachievable (µm)

0.1 1.032 1.680 1.100

0.25 0.204 0.352 0.244

• It may be worth considering a protocol-
specific quality assurance test for such 
procedures that demand particularly high 
image quality standards.

• e.g., borrowing the idea of  reference 
contrast-detail curves from our friends in 
mammography physics.

Pros:
• Ensures sufficient image 

quality for diagnosis.
• Ensures consistent image 

quality between hospitals.

Cons:
• Consistent set-up required.
• Need to liaise with 

Radiology to decide on 
“reference” curve. Example of reference curves already used in mammography. 

Acceptable and achievable standards of image quality are 
defined for the CDMAM by the EUREF European Guidelines.



Summary

• We have implemented an objective method of  measuring low contrast 
detectability in brain CT. 

• This objective evidence confirmed anecdotal concerns of  radiologists 
at our hospital that the image quality in brain CT scans they have been 
receiving from feeder hospitals is inconsistent. 

• Given that brain CTs are the most common CT examinations in the UK 
and Ireland[1], we want to raise awareness that significant variation 
can exist between centres and significantly affect stroke patient 
diagnosis. 

• In the ethos of  medical physics 3.0, we would encourage you to 
discuss this issue with radiologists in your hospital and take a 
multidisciplinary approach to optimizing CT parameters for the early 
detection of  stroke.
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