

Intra-Scanner Detector and AEC Study

Emily Seymour (Clinical Scientist & RPA)

Project Supervisor - Rob Loader (Consultant Clinical Scientist, MPE & RPA)

Study Aim

- To characterise the detector and Automatic Exposure Control (AEC) performance of each diagnostic CT scanner at UHPNT.
- Understand the baseline characteristics of each scanner in phantom study;
- Use the findings in order to inform recommendations for optimisation of CT protocols.
- Kidney Ureter Bladder (KUB) CT protocol.

University Hospitals Plymouth

GE Fleet at UHPNT

CT Scanner Name	Detector Configuration	Scanner Type	Detector Design	
Optima 660 (West)	64 x 0.625	GE Optima 660	Scintillator - 64 detector rows (40mm)	
HD750 Discovery (West)	64 x 0.625	GE HD750	Scintillator - 64 detector rows (40mm)	
Optima 540 (East)	16 x 0.625	GE Optima 540	Scintillator - 16x 0.625mm + 4 x 1.25mm either side (20mm)	
Lightspeed VCT (East)	64 x 0.625	GE Lightspeed VCT XT	Scintillator - 64 detector rows (40mm)	
Optima 660 (West Room 17)	64 x 0.625	GE Optima 660	Scintillator - 64 detector rows (40mm)	
Revolution CT (ED)*	256 x 0.625	GE Revolution CT	Scintillator - Wide coverage cone beam detector (160mm)	
Discovery Revolution Evo (PET-CT)*	64 x 0.625	GE Discovery Revolution Evo	Scintillator - 64 detector rows (40mm)	

*ASiR-V

GE Specific Parameters

- Noise Index (NI)
 - > System estimates image noise with tube current modulation via NI
 - Tube current modulated based on patient's attenuation profile as calculated by scout.
 - \blacktriangleright Higher NI = more noise in image = lower mA (and vice versa)

GE Specific Parameters

- ASiR / ASiR-V
 - ➢ Iterative reconstruction technique specific to GE
 - ➢ Algorithm reduces noise iteratively − comparing the acquired image to a modelled projection.
 - ➤ Mixture of FBP and ASiR in 10% increments
 - > ASiR 40% = 40% ASiR and 60% FBP.

Detector Characterisation

Two phantoms scanned on each scanner using same, fixed dose, protocol*

4	

CelT Phantom

Scan Type	Helical	
SFOV	Large Body (large	
	Optima 540)	
Detector Coverage	40mm (20mm	
	Optima 540)	
Rotation Time	0.6s	
Pitch	1.375:1	
kV	120	
mA	TBC	
CTDI _{VOL}	4.8mGy	
Slice thickness	1.25mm	
Reconstruction Algorithm	Standard	
ASiR / ASiR - V	0%	

GE Water Phantom

SNR (insert) = Mean CT no / SD 200mm² ROI

*Cross calibration between measured and displayed CTDIvol performed ($\pm 5\%$ tolerance applied).

Detector Characterisation

Noise - Uniformity Section GE Water Phantom

Excluding the Optima 540, the mean SNR (insert) measured 4.70 ± 0.14 .

SNR Optima 540 -1.41times the mean SNR for all other scanners.

Excluding the Optima 540, the mean noise measured 20.86 ± 0.88 .

Noise Optima 540 - 0.76 times the mean noise for all other scanners.

Optima 540 - Lower Noise?

➢2D reconstruction algorithm

Introduce lower noise during reconstruction process in comparison to the 64 slice CT (cone beam reconstruction algorithms).

Design of detector channels

No septa separating the outer (1.25mm) detector elements, allowing more photons to reach outer detector elements.
Septa between detector elements

Nominal helical thickness

> 33% higher for Optima 540 (all 'plus' mode)

> More photons available, less noise.

Intra – Scanner AEC Study

Noise and Patient Dose

Scanner	Mean Noise	CTDI _{VOI} (mGy)
GE Optima 660 (West)	31.89 ± 0.53	4.84
GE HD750 Discovery (West)	26.96 ± 0.41	5.85
GE Optima 540 (East)	25.27 ± 0.68	6.64
GE Lightspeed VCT (East)	33.23 ± 0.50	4.41
GE Optima 660 (West Room 17)	31.90 ± 0.49	4.80
GE Revolution CT ES (ED)	30.29 ± 0.31	3.97
GE Discovery Revolution Evo (PET-CT)	29.74 ± 0.51	4.88

Noise SD 200mm² ROI

HD750 - 11MW44.x (2008)

Optima 540

AEC algorithm does not contain the additional step to ensure smoother transitions at anatomical boundaries that later models possess.

Causes a tube current oscillation effect at transitional boundaries for acquisitions acquired on a stepped phantom.

Relative Intensity

Clinical Protocol 10 8 SNR (insert)/ CTDIvol (mGy) 6 SNR Δ CTDIvol 2 0 GE Optima 660 GE Optima 540 GE Lightspeed GE Optima 660 GE Revolution GE HD750 E Discovery (West) Discovery (East) VCT (East) (West Room CT ES (ED) **Revolution Evo** (PET-CT) (West) 17) Scanner

Intra-Scanner Comparison of Objective Image Quality and Patient Dose for CT KUB

Revolution AEC system adjusted the prescribed mA prospectively as per the prescribed ASiR-V%.

Had direct impact on prescribed tube current and hence patient dose.

Significantly different to the AEC systems employed on the other scanners.

*All scanners utilised ASiR/ASiR-V 40% apart from Revolution which utilised ASiR-V 50%

Further AEC Characterisation Work...

Relationship between the NI and CTDI_{VOL} (left) / image noise (right) for the Optima 660

Summary

- Variables in CT optimisation include both detector and AEC characteristics and performance; as well as the exposure parameters.
- Vital to understand the AEC system of CT scanners prior to establishing clinical protocols or undertaking optimisation clinically.
- Subtle differences can lead to significant variations in performance.
- Different manufacturer scanners = further challenges.
- Patient and speciality imaging requirements also influence the optimisation of specific protocols.

Thank you for listening

emily.Seymour@wales.nhs.uk

THANK YOU **IT'S THE END OF MY PRESENTATION!**

Acknowledgements: Rob Loader, Consultant Clinical Scientist Dr Mac Armstrong, Consultant Radiologist General Electric Healthcare (Milwaukee, USA), representatives from Europe, China and USA Megan Crispin, Reza Khalili & Jude Page, Clinical and Radiation Physics team at UHPNT