Alternate Image Quality Metrics for Advanced Reconstruction Algorithms

Laurence King, DClinSci Principal Physicist Royal United Hospitals Bath

motivation

DClinSci research project carried out as part of HSST training

Filtered back projection (FBP)

- Explicit, analytic mathematical solution to CT reconstruction
- For an object of a known attenuation there is a well-understood link between image noise and acquisition dose
- The convolution kernel applied to data before back projection determines the trade off between image noise and spatial resolution
- For a given convolution kernel we are able to predict image noise and spatial resolution properties for a given object
- Image quality measured in a phantom is a viable predictor of clinical • image quality.

Iterative reconstruction (IR)

- Proprietary black boxes
- Often starts as FBP, followed by iterative process of forward-projection and comparison of simulated raw • data to actual acquisition data and subsequent correction of reconstructed image set
- Options may include:
 - Preferential weighting of less noisy projection data
 - Modelling of photon optics and scatter properties (full Model-Based IR) •
 - Additional noise reduction by identification of statistical noise (in raw data and in image space)
- The outcome is highly selective noise reduction:
 - Uniform areas experience high levels of noise reduction
 - Areas containing structures experience lower noise reduction in order to preserve edge appearance

Solomon et al, Med. Phys. 41 (9), September 2014 http://dx.doi.org/10.1118/1.4893497

Phantom image – realistic lung parenchyma structures

- The selective noise reduction properties of IR means that noise reduction becomes locally dependent on object spatial frequency content and contrast.
- Reconstructed Image quality is dependent on the object you are • scanning.
- Traditionally we measure image quality in mostly uniform phantoms with few different contrast inserts
- Traditionally we assess image resolution only at high contrasts
 - This is no longer adequate for IR images.

Challenges of IQA

with IR

The RUH, where you matter

Filtered back projection noise magnitude map

AAPM report 233 approach to IQA

- AAPM report 233 recommends measurement of <u>task-specific</u> image quality metrics:
 - NPS in specified object at a specified dose level
 - TTF = MTF for a specified object contrast in the same size phantom and dose
- A detectability index d' can then be calculated for an object of that contrast in a noisy background:

AAPM report 233 approach to IQA

• This requires many measurements at different dose levels and contrasts...

HU contrast with polyethylene background

-895

1000

335

90

50

AAPM report 233 approach to IQA

- Results: plots of contrast detectability index against acquisition dose for specific contrast object, object size and reconstruction setting.
- However:
 - measurements are still made in mainly uniform objects with no realistic tissue structure or background.
 - We know that this will effect contrast detection and spatial resolution for IR algorithms.
 - Not all clinical tasks are based on contrast detection – so is calculation of contrast detectability always clinically relevant?

Seeking a practical image quality metric for clinical optimisation

Investigating other approaches - SSIM

- The Structural Similarity metric (SSIM) has been used extensively in imaging research for over a decade
 - SSIM is a full-reference image quality metric
 - You need a "ground truth" reference image
 - You then assess image quality of test images against ground truth images
 - SSIM is calculated in a pixel-wise nature to give relative image quality between the image sets
 - SSIM is then pooled over your region of interest to give a single image quality metric for the image, between 0 and 1, where 1 = exact similarity.

Π SSIM in a phantom O 5 0 () (N O D

Assessing SSIM in an anthropomorphic phantom

- The aim was to determine if SSIM could be used to predict image quality assessment by a radiologist
- SSIM was designed to reflect human visual response in detecting changes in luminance, contrast and structural content in an image
- SSIM can be calculated from images of ANY object no need to stick to circular inserts in a uniform phantom.
- So... use a clinically relevant, task-specific object such as a realistic lung phantom

Assessing SSIM in an anthropomorphic phantom

- Chest phantom scanned at many doses and IR reconstruction options
- Image quality criteria scored subjectively by three radiologists based on European Guidelines on Quality Criteria for Computed Tomography
- Six clinical structures scored on a 4-point Likert scale for each image set.
- SSIM calculated relative to high dose FBP image to represent "ground truth"

Conclusions?

- Interesting but not definitive results. More research needed!
- SSIM *might* be an effective way to predict clinical image quality against a reference
 - SSIM is essentially a test of fidelity of image reconstruction against a ground truth
- SSIM is probably less sensitive to changes in noise texture than d'.
- Other studies use different ground truth images, e.g. the noise-free 3D print file for a printed phantom, or artificially de-noised images.
- SSIM was pooled over the entire phantom region a next step would be to calculate tissue by tissue in the phantom
 - Alternative SSIM-derived metrics exist that perform weighted pooling of SSIM by classifying the images into uniform, textured and edge structures.

The RUH, where you matter

ference t a ground truth

Take home messages

- We ought to think more deeply about how, and why we are assessing image quality in CT
- Quality Control: technical or physical assessment of CT scanner functionality
 - Requires objective and reproducible measurement of image quality metrics
 - Ensures that we detect faults in physical imaging chain, changes in software
- Image optimisation and clinical performance
 - Our IQA needs to be more clinically relevant and task-based.
 - We should be performing IQA using clinically relevant test objects containing realistic anatomical detail and structure.
 - The search is still on for more relevant measures of clinical image quality.

Image quality assessment

Technical image quality

Simple phantoms

Anthropomorphic phantoms

Generic tests, Performance specification

System characterisation, Protocol comparison Task-specific tests, clinical detail-based performance

The RUH, where you matter

Clinical efficacy

Patient-specific

Diagnostic sensitivity and specificity

Thanks to

- Elly Castellano
- Marianne Aznar and Abigail Bryce-Atkinson
- My colleagues at the Royal United Hospitals Bath Medical Physics department

References

- Performance Evaluation of Computed Tomography Systems The Report of AAPM Task Group 233 (2019) https://www.aapm.org/pubs/reports/detail.asp?docid=186
- Zhou Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, (2004). 'Image quality assessment: from error visibility to structural similarity,' in IEEE Transactions on Image Processing, 13(4), pp. 600-612 https://doi.org/10.1109/TIP.2003.819861
- Joemai RMS, Geleijns J. (2017). 'Assessment of structural similarity in CT using filtered backprojection and iterative reconstruction: a phantom study with 3D printed lung vessels.' BJR 90(1079):20160519. https://doi.org/10.1259/bjr.20160519

