CT revolutions: the impact of CT imaging on the role of the medical physicist

Elly Castellano

Outline

- Four decades of CT scanning
- The changing role of the medical physicist
 - Quality control testing
 - CT dosimetry
 - Optimisation
- What does the future hold?

CT scanning over a career

- Single-slice, step-and-shoot CT (1987)
- Electron beam CT (1991)
- Single-slice helical CT (1999)
- Multi-slice CT (2002)
- Dual-source CT (2010)
- Photon-counting CT (too late?)

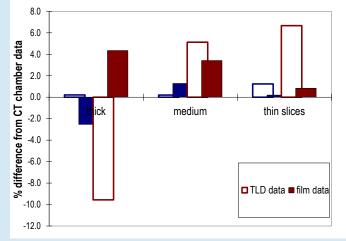
Quality control: getting started

- Philips SSCT step-and-shoot scanner in teaching hospital with busy A&E
- Multiple attempts to implement QC testing

 Asked, warned, socialised for 4 years
- Tip: do not implement QC testing on A&E CT scanner

The heyday of QC: 1991-2002

- 2 SSCT scanners (Somatom DR2, Plus)
- EBCT scanner (Imatron)
- Monthly QC testing
 - Set up after acceptance (EBCT)
 - Implemented after scanner fault (DR2)
 - Service transferred (Plus)



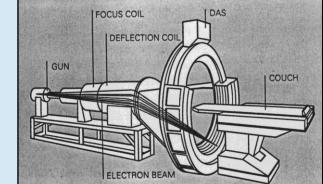
The heyday of QC: 1991-2002

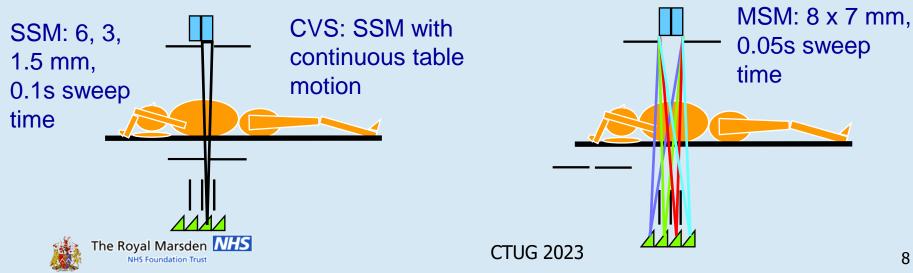
- Routine performance tests
 - CTDI, image noise, CT number accuracy, uniformity, artifacts, spatial resolution, slice thickness
 - CTDI using film, TLDs, CT chamber (from 1996)
 - Image quality using water and Scanplas phantoms
 - ROI analysis on scanner

1996 (blue DR2, red Plus)

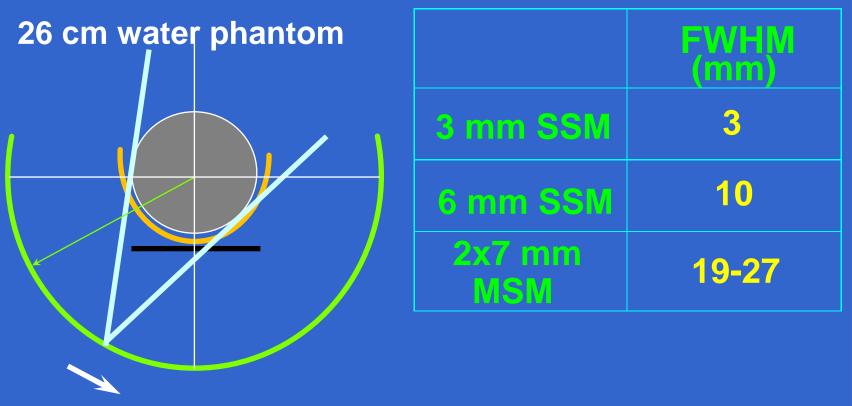
CTUG 2023

The heyday of QC: 1991-2002

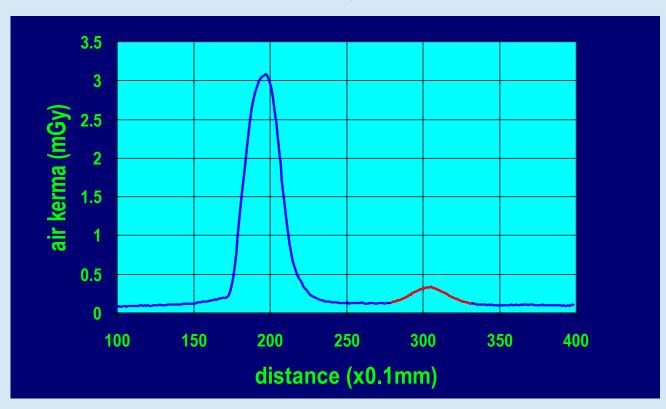

- Commissioning tests
 - Tube and generator
 - CTDI-in-Perspex (from 1996)



EBCT


- 4 W targets, 210° arc
- 2 detector rings, 216 $^{\circ}$ arc
- 4th generation geometry
- 130 kVp, 630 mA
- SSM, MSM and (later) CVS modes
- ECG gating

EBCT-specific QC


• Beam profiles – measured monthly

direct exposure film

EBCT-specific QC

• Beam profiles – satellite ring

EBCT-specific QC

• Structured noise

CTUG 2023

SSCT helical scanning

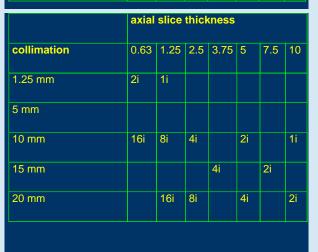
- First helical scanners installed in 1999 (CT/i, Somatom Plus 4)
- First CT scanners accepted and commissioned

 With a little help from friends
- Additional QC tests introduced to monitor effect of helical pitch
 - Helical CTDI
 - CT number accuracy, noise, uniformity and slice thickness in helical mode along z-axis

MSCT and scanner proliferation: 2002-2014

 Between 2002 and 2006 all radiology scanners replaced with MSCT scanners

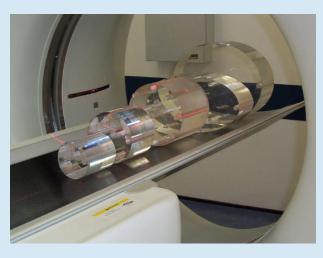
hospital	scanner	MSCT	year
RMH (C)	LS32	32	2006
RMH (S)	LS16	16	2003
RBH	Volume Zoom	4	2002

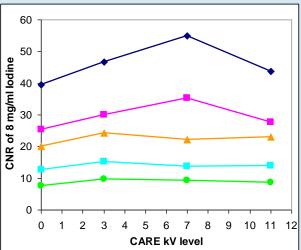

- The number of radiology CT scanners doubled between 2010 and 2014 $(3 \rightarrow 6)$
- MSCT scanners were also installed in RT (3) and NM departments (8) The Royal Marsden NHS

NHS Foundation Trust

QC testing of MSCT

- QC tests reviewed /tests added
 - Standard slice10 -> 5 mm
 - Variation of CT number accuracy, noise and uniformity with slice collimation and detector row


	axial slice thickness						
collimation	0.63	1.25	2.5	3.75	5	7.5	10
2 x 0.63 mm	2i						
1 x 1.25 mm		1i					
4 x 1.25 mm		4i	2i		1i		
4 x 2.5 mm			4 i		2i		1i
4 x 3.75 mm				4i		2i	
4 x 5 mm					4 i		2i



QC testing of MSCT

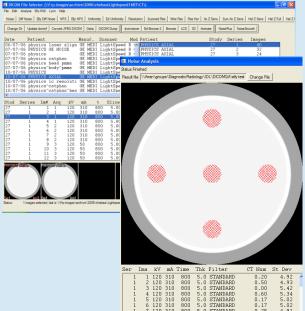
- QC tests reviewed /tests added
 - Tube current modulation tests with phantom family
 - Later auto kV selection tests with iodine inserts (commissioning)

Dual-source CT scanners

- 3 DS scanners installed between 2010 and 2014
- One week for acceptance and commissioning!
- Additional QC tests implemented for A+B modes
 - CTDI, slice alignment, CT number accuracy, noise and uniformity in DS mode (cardiac, DS or DECT modes)
 - Iodine calibration in DECT mode (commissioning)

Streamlining QC testing

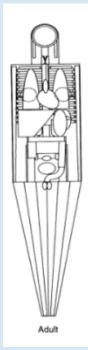
- CT pencil ionisation chambers (from 1996)
- Manufacturer's performance phantom and tests
- Catphan phantom (from 2004)
- Updated tests w.r.t. IPEM report 91 (2005) and IPEM report 32 part III (2003)
- Routine QC frequency reduced:-


NHS Foundation Trust

- 4 h every 6 months for single-source CT
- 4 h every 4 months for dual-source CT
- X-ray tube acceptance streamlined

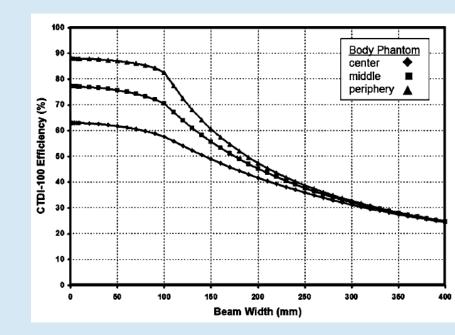
 For a time X-ray tubes replaced every 6-12 months
 The Royal Marsden M

Streamlining QC testing


- Physics CT scan protocols
 - Set up at acceptance, modified in year 1 for routine testing
- Automated image analysis for batch image processing
 - IDL, IQWorks, ImageJ
- Tip: always review images at scanner side

- CT dose indicators were not available on SSCT scanners
- Landmark NRPB national CT dose survey in 1989
 - NRPB reports R248 R250
 - Fixed scan parameters collected for common exams
 - CTDI-in-air measured using TLDs
 - Normalised organ doses calculated using MC techniques -> E

- CTDI_w proposed in 1995 (Leitz *et al* 1995)
- In 1998 CTDI_{vol} and DLP recommended by CEC for CT dosimetry
- Turned out to be controversial in US


 Publications by John Boone and Bob Dixon
- Adopted as IEC standard
 - Available on CT scanners from MSCT onwards

 Definitions of CTDI_{vol} and DLP revised for wide-beam CT scanners c. 2010

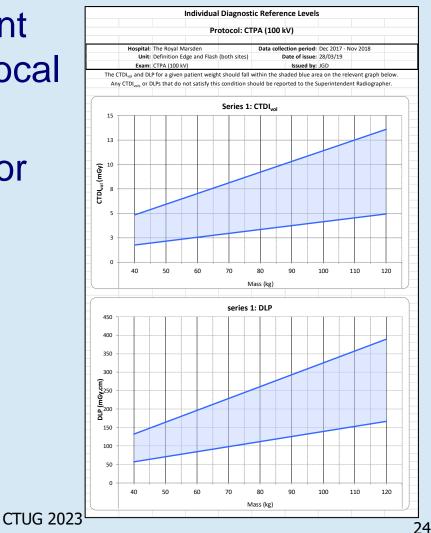
- Platten et al 2013

- Further controversy in the US
 - Counter-proposal: equilibrium dose

Boone 2007

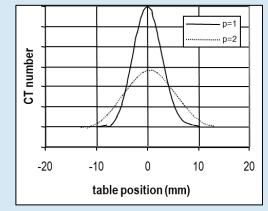
• CT dose surveys carried out since c. 1995

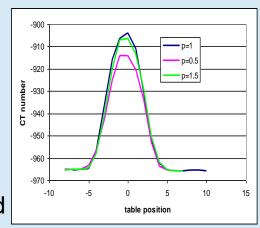
period	Scanner type	CT dose indices	H&W	Scan protocol	CTDI measure ment	Effective dose estimate
1990s	SSCT	n/a	n/a	manual	CTDI-in- air (TLDs)	Manual calculation
2000s	SSCT	n/a	n/a	manual	CTDI-in- air (CT chamber)	ImPACT calculator
2000s	MSCT	Paper Excel	H&W AP+LAT	manual	CTDI-in- air	ImPACT CT-Expo
2012+	MSCT	OpenREM	H&W	Protocol listing	CTDI-in- air	ImPACT CT-Expo



- CT dose surveys have become easier through advent of DMSs...
- ...but more problems now come to light
- Is it dose audit or is it optimisation?

Local and individual DRLs


- With information on patient size, we can go beyond local DRLs
- IDRL charts being used for operator-led audit



Early attempts at optimisation

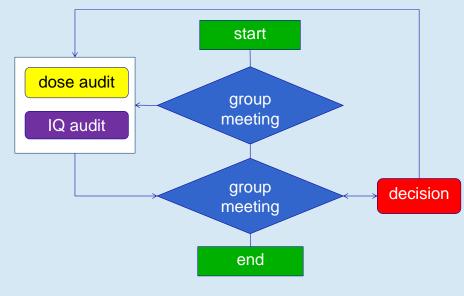
- In 2000s, shared learning from commissioning
 - IQ and mAs changes with pitch
 - Behaviour of tube current modulation

Helical SSCT

Helical MSCT

SPR	AEC mode	CTDI _{vol} mGy
90° then 0°	Auto mA	5.7
0° then 90°	Auto mA	10.1

Early attempts at optimisation


- Transferred knowledge between hospitals
 HRCT of the chest
- Transferred scan protocols between scanners
 - Often doses for default scan protocols on new scanner were higher than for local (optimised) scan protocols
 - Need to be careful about how to say this
- Configured tube current modulation
 - With detrimental consequences at times
 - Tip: use anthropomorphic phantoms

Optimisation MDTs

- Started in 2012
- Poor IQ provided impetus
- Meeting format chosen to suit clinical team

(MP)

RMH CT optimisation meeting, 13 Feb 2017

Present: Elly Castellano (IAC), Ed McDonagh (ETM), Laurence King (LRK), Jamie Dormand (JGD), Jonathan Frazer-McRobert (JFM), Cate Savidge (CS), Angela Riddell (AR), Michelle Peters

Redmine RMH optimisation page: http://frp-vm-svn:5000/projects/rmf

Last meeting: CTOptimisationMeeting2016x03

Optimisation projects

See last meeting page for table of ongoing projects: These will be updated in minutes of this meeting

Revision 2 of this page contains the minutes taken at time of this meeting on the 13th Februar

project name	project type	objective in brief	started	scanners	project team	Redmine	status	meeting notes
CT DIEP scans	clinical	Improve quality of images surgeons use and achieve protocol parity across sites	March 13	Chelsea Flash, Chelsea Edge, Sutton Flash, Sutton Edge	CS, DM, DG		in progress	show Maris minutes
CT NTAP scans	clinical	match neck and TAP series over shoulders	November 12		CS, DM, DG	redmine link	in progress	show Mar16 minutes
HRCT scans	clinical	review volume v interspaced techniques	July 14	Chelsea Flash, Chelsea Edge, Sutton Flash, Sutton Edge, LS16	CS, DM		in progress	show Mar16 minutes
CT Colonoscopy	clinical	reduce dose for prone scan?		Chelsea Flash, Chelsea Edge, Sutton Flash, Sutton Edge, LS16	CS, DM / Sandy, AR, EM			show Mar16 minutes
5 to 3 mm imaging	clinical	move to 3 mm axial recons as standard	August 14		EM, AR, CS, DM	redmine link	in progress	show Mar16 minutes

Optimisation today

- Configure global TCM settings
- Set up / modify scan protocols with CT lead
 - For new scanners (with Apps)
 - As part of optimisation project
- Troubleshoot scan settings
 - With CT lead and Apps

The Royal Marsden NHS

NHS Foundation Trust

- Carry out before-and-after dose audits

 Using OpenREM
- IQ assessed by radiologists / IQ measurements
 CNR, NPS, MTF using appropriate phantoms

Optimisation

- First optimisation project is the hardest
- Optimisation is a continuous process
 - Expect flurry of activity for a new scanner
 - Agree principles for setting up scan protocols in advance
- Each project requires different resources
 - Interspaced HRCT: protocol change; CT lead; 10 min
 - CT DIEP angio: several technique iterations on 3 scanners; 3 CT leads, radiologist, surgeon; 7 years
- The more you do, the more there is to do
- Publish what you do to help others

What does the future hold for the medical physicist?

- Less quality control testing!
- Focus on commissioning to aid optimisation
- Manufacturer training for physicists

 Reduce amount of reverse engineering required
- Automated routine QC testing
 - We set up the scan protocols
 - Radiographers scan phantoms
 - Do we need to measure CTDI and beam profiles?
 - Will we lose the skill to drive the scanner?
 - Images analysed automatically
 - We review results
 Royal Marsden NHS

NHS Foundation Trust

CTUG 2023

What does the future hold for the medical physicist?

- Less routine patient dosimetry!
- Universal access to DMSs
- Automated generation of local DRLs
 - Mapping of scan protocol names onto DMS is a prerequisite
- Greater emphasis on achievable dose indicators
- Focus on patient dose audit for optimisation purposes

What does the future hold for the medical physicist?

- More CT optimisation!
- Lots exciting things coming up:-
 - Photon counting CT
 - AI-based reconstruction

Acknowledgements

- Sue Edyvean and UKHSA team
- ImPACT team
- Ed McDonagh
- RMH DR physics group through the ages
- Tim Wood

