


Low dose PET-CT attenuation correction – How low can you go?

Dr Ruth Bradley, Rachael Clitheroe, Dr Matthew Walker and Dr Neel Patel Oxford University Hospitals NHS Foundation Trust

Summary

Rationale

- New clinical trial involving a novel PET tracer
- Long half-life (Zr-89, 3.3 days)
- "First in Man", protocol specified daily PET-CT scans over course of 1 week
- Up to two administrations
- Up to 12 PET-CT AC&L scans

Initial Dose Calculation for MPE

• Dosimetry for radiopharmaceutical:

Type of investigation/therapy:	PET
Radionuclide:	89Zr
Proposed activity (MBq):	37 MBq
Route of administration:	IV
Number of administrations per participant:	2
Effective dose or target tissue dose per administration:	25 mSv, Total 50 mSv

Reference: Börjesson PK, Jawu YW, de Bree R, Roos JC, Castelijns JA, Leemans CR, et al. Radiation Dosimetry of 89Zr-Labeled Chimeric Monoclonal Antibody U36 as Used for Immuno-PET in Head and Neck Cancer Patients. *The Journal of nuclear medicine*. 2009; 50(11):1828-1836.

Local DRLs for Radiographic, Fluoroscopy and CT			
examinations	RP&P-RP-L4-010	Version: 1.5	Review Due: 30/05/2024
•	•		

Active Document

Computed Tomography (PET)

	Mean DLP (mGycm)		
Examination	Churchill		
	PET CT		
PET FDG Head	425		
PET FDG Whole Body	400		

Based on local survey data

Initial Dose Calculation for MPE

Dosimetry for PET-CT AC&L

Procedure	Routine	Additional	Effective Dose (mSv)
AC PET-CT standard dose	0	12	8.4 mSv, total 100.8 mSv

Total trial dose: 150 mSv

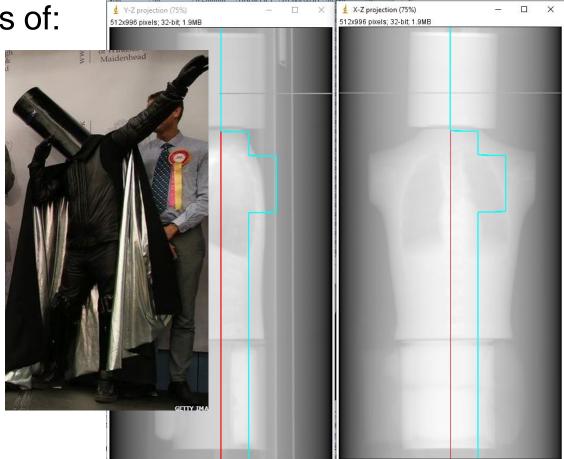
Discussions!

Trial team were not happy with these doses as they had found papers referencing low dose PET-CT.

> Our local DRL is consistent with the National DRL and no other "low dose" protocols used clinically.

> > Optimisation project set-up to develop local low dose PET-CT protocol.

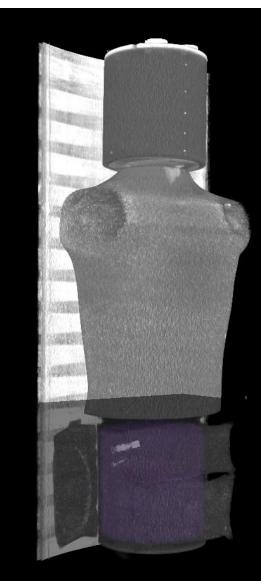
Optimisation Team


- Medical Physicists from both Imaging Physics and Radioisotope Physics Teams
- Consultant Radiologist and ARSAC practitioner
- Clinical Nuclear Medicine Staff
- Scanner: GE Discovery 710 (installed 2014)

Oxford University Hospitals NHS Foundation Trust

Phantom Scans

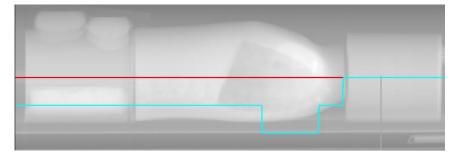
- Phantom consists of:
- Catphan 600
- Chest Phantom
- SUV phantom
 (solid Ge-68)
 + Saline bags



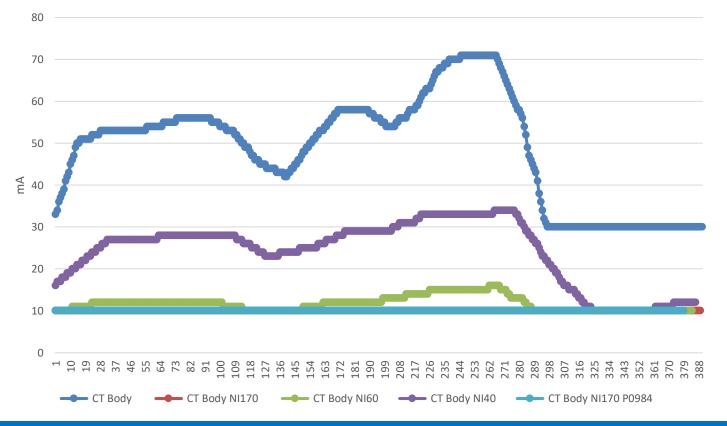
Loveland, J. (2011). SPICE-CT [computer software]. Edinburgh

SUV Analysis

- No SUV artefacts were observed in any of the scans
- Mean SUV (measured with a large cylindrical ROI) was equal to 1 in all scans
- Coefficient of variance in measured activity concentration (Bq/ml) was the same for the existing 'low' dose scan and the scan with NI=170


Protocols Tested

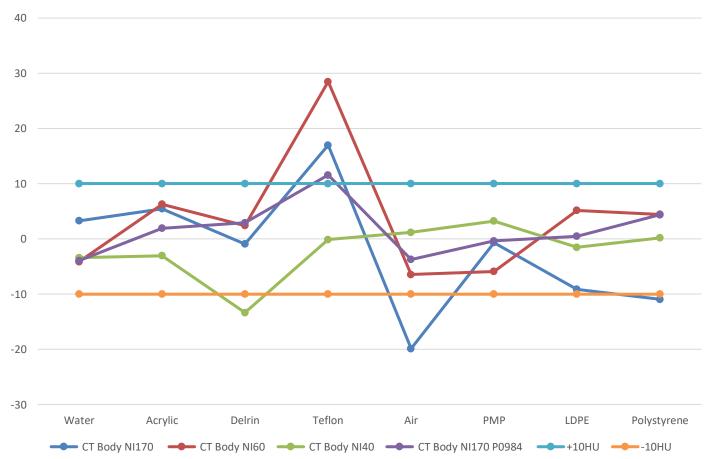
	mGy	mGycm						
Series Description	NI	CTDI	DLP	min mA	max mA	pitch	ASiR	slice width
CT Body	25	2.14	218.42	30	100	0.98	40%	2.5
CT Body NI170 (GE)	170	0.28	29.23	10	40	1.5	40%	2.5
CT Body NI170	170	0.28	29.23	10	40	1.5	100%	3.75
CT Body NI60	60	0.33	34.3	10	40	1.5	40%	2.5
CT Body NI40	40	0.66	69.37	10	40	1.5	40%	2.5
CT Body NI170 P0984	170	0.44	44.64	10	40	0.98	40%	2.5



Oxford University Hospitals

Tube Current Modulation

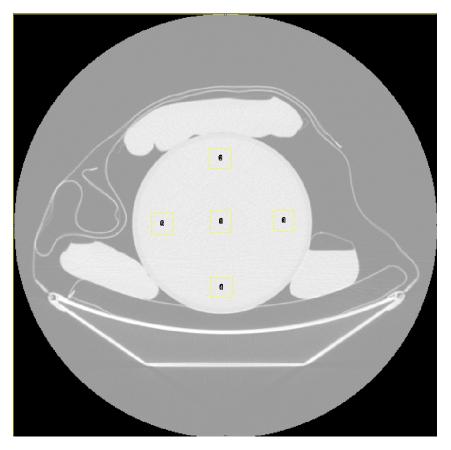
mA Variation (Tube current modulation)



CT Number analysis

3 slice average of Catphan CT number, Reference is "full dose" scan

Noise analysis – Catphan Uniformity section


Series Description	IPEIVI report 37 part III Noise I	IPEM report 32 part iii Uniformity
CT Body	1.65	-0.16
CT Body NI170	3.56	0.44
CT Body NI60	3.48	0.45
CT Body NI40	3.57	1.15
CT Body NI170 P0984	3.17	0.88

Noise analysis – SUV phantom

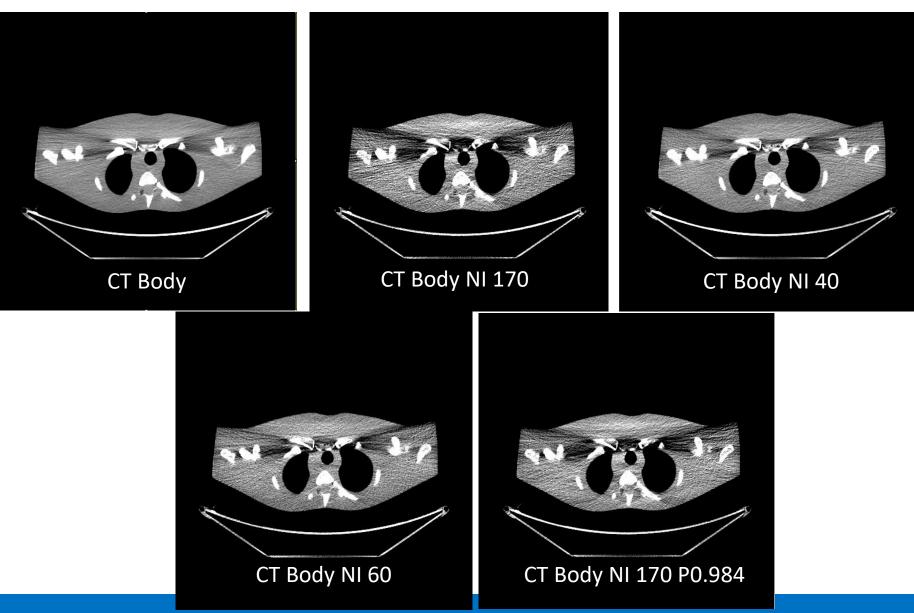

Series Description	IPEM report 32 part iii Noise	IPEM report 32 part iii Uniformity
CT Body	2.52	-0.51
CT Body NI170	7.04	2.02
CT Body NI60	6.80	1.75
CT Body NI40	3.66	-0.89
CT Body NI170 P0984	6.69	2.75

Image Quality

Other Applications

- Incident where pregnancy discovered on scout scan.
- Low dose protocol could be used as patient already injected.
- Other research projects.
- Work could also contribute to reducing current doses and optimising new scanners.

Positives

Creation of PET-CT optimisation group

Minutes: September '23 NM CTAC Meeting

07 July 2023 13:38

Agenda for meeting 26/09/2023 9am	Action
Attendees	
RB (chair), RC (minutes), LH, JR, AP, NP, MW, SJ, MK, AT, DM	
Quorum: Representative from Physics, Modality Lead and Radiologist	
Apologies	-
FG, DGM, AS, AN, SM, MB	
Actions from Previous Meeting	<u> </u>
N/a as first NM, PET & CTAC Optimisation Meeting	
Specific/Ongoing Projects	
· Ultra-low dose CTAC phantom work has been carried out in CRIC to determine a protocol for ultra-low	
dose CTAC discuss actions needed to implement this. NP has reviewed images of phantoms acquired on	RC
ultra-low dose CT protocol and is happy with the quality of image sent with 40% ACER. Discussion was	AS
had around reducing the dose from the normal CTAC, considering the nDRL and possible patient impact.	AP
MK raised concerns over image quality in the lungs, particularly for sarcoma patients. AP raised	RB
concerns about using a lower mA range for larger patients and suggested a possible weight cut off for a	

Conclusions

- Small projects can be a good starting point.
- Patient imaging will need review once trial begins.
- Other projects in discussion:
 - Standardisation work between both scanners
 - SPECT-CT optimisation

