

Construction of a phantom for dual energy CT quality assurance tests Anne Hill, Teresa Lo, Holly Elbert, Samuel Stewart-Maggs,

Holly Ashman October 2024

- Thanks to Kirsten Hodgson and Laurence King for advice on dual energy testing in general
- CTUG presentation by Laurence King in 2021: "Dual energy CT image quality QC"

Contents

- Dual Energy CT a very brief overview
 with reference to the GE Apex CT scanner
- List of dual energy QA tests carried out at commissioning

including test object

- Construction of the in-house DECT QA phantom
- Measurements made using the DECT QA phantom: results and analysis

University Hospitals

Bristol and Weston

NHS Foundation Trust

- Conventional single-energy CT (SECT) uses
- a polychromatic X-ray source to generate images based on linear X-ray attenuation
- For some beam energies, some materials have similar linear attenuation coefficients and hence CT numbers, making it difficult to differentiate between them
 - E.g. calcified plaques and iodine-containing blood

University Hospitals

Bristol and Weston

NHS Foundation Trust

Dual energy CT (DECT)

- Dual energy CT (DECT) acquires projection data at two different energy spectra
- Materials have unique attenuation profiles at different energy levels
 - Higher atomic numbers: larger differences in attenuation between high and low X-ray energies
- DECT uses this to differentiate and quantify material composition

Methods of acquiring dual energy datasets

University Hospitals Bristol and Weston

NHS Foundation Trust

- Rapid tube potential switching
- Multilayer detectors
- Dual x-ray sources
- The GE Apex uses fast kV switching

 80 and 140 kVp at sub-millisecond speed
 minimises the impact of patient motion

NHS Foundation Trust

University Hospitals Bristol and Weston GE – Rapidly switched kV

CT Tube 50cm **CT** Detector

Examples of additional image sets reconstructed in DECT

University Hospitals Bristol and Weston

- Material Density Images
- Virtual monochromatic images
- Virtual Unenhanced images

DECT Commissioning Checks

CTDIvol

- Perspex CTDIvol phantom (as for SECT scans)

- Able to do in service mode only
- CT number values and high contrast resolution
 CatPHAN as for SECT scans
- CT number accuracy / uniformity / noise
 - GE water phantom
- Iodine quantification and CT number accuracy of virtual monochromatic images
 - In-house DECT QA phantom

Commercial phantom

 Gammex MECT phantom – contains several iodine inserts of different concentrations, plus additional inserts

Constructing the DECT phantom in-house

NHS Foundation Trust

• Main reference:

"Development of a dual-energy computed tomography quality control program: Characterization of scanner response and definition of relevant parameters for a fast-kVp switching dual-energy computed tomography system", J L Nute et al., Med. Phys. 45 (4), April 2018

 Phantom described in this paper was the prototype for the Gammex MECT phantom

Components of DECT phantom

• 900 ml food container

- contains background material: deionised water

- 5 x 65 ml inserts
 - Similar diameter to Gammex MECT phantom
 - Iodine concentrations 0.5, 2, 5, 10 and 15 mg
 I/mL
- 2 holders for the inserts 3D printed in house
 - Notches in each to aid consistency in positioning

Components of DECT phantom

Constructing the iodine inserts

NHS Foundation Trust

- Source of iodine: left over 'Omnipaque' iodine contrast agent (300 mg lodine/ml)
 - All concentrations from now on refer to iodine concentrations

- Diluted with deionised water (from supermarket)
- We are supportive respectful innovative collaborative. We are UHBW.

- Scales to measure water volume (ml)
 measurement uncertainty: 0.05ml
- 2.5ml syringe to draw up iodine solution

 measurement uncertainty on individual draws:
 0.05ml

The Chemistry

Weare

A worked example

Good

CareOuality

• Relevant quantities:

Original concentration of iodine (c_1)	5 mg/ml
Final concentration of iodine (c_2)	0.5 mg/ml
Volume of 5 mg/ml iodine solution (v_1) needed to make the 0.5 mg/ml solution	What we needed to calculate
Final volume of 0.5 mg/ml iodine solution (v_2) . This is the volume of each vial used for the inserts (+ a bit extra).	80 ml

- $v_1 \times c_1 = v_2 \times c_2$ (total mass of iodine stays the same)
- Therefore, the volume we needed to draw from the 5 mg/ml solution $(v_1) = 80 \times 0.5 / 5 = 8 \text{ ml}$
- And the additional amount of deionised water required (v_w) was 80 ml - 8 ml = 72 ml

We are supportive respectful innovative

> National Physical Laboratory, 2013. Good Practice Guide 11: A beginner's guide to uncertainty of measurement. <u>https://www.npl.co.uk/gpgs/beginners-guide-measurement-uncertainty-gpg11</u> David Harvey, 2016. Analytical Chemistry 2.1 and Analytical Chemistry 2.1: Solution Manual. <u>http://dpuadweb.depauw.edu/harvey_web/eTextProject/SMFiles/AC2.1SolnManual.pdf</u>

Uncertainty analysis

- Relative uncertainties summed in quadrature for each dilution step
- Uncertainties propagated through each dilution step
- 0.5 mg/ml example:

Quantity	Value	Uncertainty (σ)	Uncertainty %
$\mathbf{c_1}$ (starting concentration)	5 mg/ml	0.06 mg/ml (uncertainty from previous dilution)	1.23
v_1 (vol. of 5 mg/ml solution)	8 ml	$\sqrt{4 imes 0.05^2}=$ 0.1 ml (4 draws with the 2.5 ml syringe)	1.25
v ₂ (vol. of 0.5 mg/ml solution)	80 ml	$\sqrt{\mathbf{0.1^2} + \mathbf{0.05^2}} = 0.1 \text{ ml}$ (uncertainties in v ₁ and water)	0.14
c ₂ (final concentration)	0.5 mg/ml	0.01 mg/ml	1.76

We are supportive respectful innovative

> National Physical Laboratory, 2013. Good Practice Guide 11: A beginner's guide to uncertainty of measurement. https://www.npl.co.uk/gpgs/beginners-guide-measurement-uncertainty-gpg11 David Harvey, 2016. Analytical Chemistry 2.1 and Analytical Chemistry 2.1: Solution Manual. https://dpuadweb.depauw.edu/harvey_web/eTextProject/SMFiles/AC2.1SolnManual.pdf

Summary of iodine insert concentrations with errors

University Hospitals Bristol and Weston

NHS Foundation Trust

Iodine concentration (mg/ml)	Uncertainty (mg/ml)
0.50	0.01
2.00	0.03
5.00	0.06
10.0	0.1
15.0	0.2

- Operator error not included in calculation of measurement uncertainties
 - Variation in repeat constructions required to measure

Inspected and rated

CareQuality

ommission

Good

- The DECT phantom was positioned horizontally on the CT couch
- Axial images were assessed

Acquisition settings

kV 1	kV 2	scan type	pitch	detector coverage (mm)	rotation speed (s)	mA	image thickness (mm)	SFOV	DFOV (cm)	CTDIvol (mGy)
80	140	helical	0.516	8x5	0.5	370	5	med body	22.7	18.81

Iodine quantification measurements

NHS Foundation Trust

- Material density images were acquired
- ROIs were placed within the image of each iodine insert and the measured iodine concentrations (with standard deviations) were displayed
- These were then compared with the nominal values
- We are supportive respectful innovative collaborative. We are UHBW.

Iodine quantification results University Hospitals Bristol and Weston

Inspected and rated Good Care Quality Commission

Iodine quantification results University Hospitals Bristol and Weston

NHS Foundation Trust

nominal iodine concentration (mg/ml)	measured iodine concentration (mg/ml)	% difference measured to nominal iodine concentrations (%)	absolute difference measured to nominal iodine concentrations (mg/ml)
0.50 +/- 0.01	0.59 +/- 0.07	18	0.09
2.00 +/- 0.03	2.21 +/- 0.07	11	0.2
5.00 +/- 0.06	5.44 +/- 0.08	9	0.4
10.0 +/- 0.1	10.83 +/- 0.07	8	0.8
15.0 +/- 0.2	16.17 +/- 0.08	8	1.2

Iodine quantification tolerance suggested in Nute et al: > 10% or > 1 mg/ml (whichever greater)

GE Apex manual suggests a tolerance in measurements of material density of 10% Wear ^{supr} or +/- 0.3 mg/ml (whichever greater) resp innovative collaborative.

We are UHBW.

CT number measurements for each virtual mono-energetic image

University Hospitals Bristol and Weston

- Virtual mono-energetic images were generated – 40 to 140 keV
- ROIs were placed within the image of each iodine insert and the CT number and standard deviation were displayed
- These values were then compared with CT numbers derived using the National Institute of Standards and Technology (NIST) Standard Reference Database 126
 - The NIST database provides mass attenuation coefficients, from which Hounsfield units can then be calculated

CT number accuracy results

Monoenergetic HU versus kV for different iodine concentrations (mg/ml)

NHS Foundation Trust

Difference between measured and nominal CT numbers (in HU)

	% difference measured to nominal CT numbers at each iodine concentration (%)						
kV	0.5	2	5	10	15		
40	13	8	6	6	6		
50	15	8	6	6	5		
60	21	11	7	7	6		
70	33	13	9	8	6		
80	41	15	9	8	7		
90	56	19	11	9	7		
100	72	23	12	10	8		
110	89	26	13	16	8		
120	123	33	16	13	9		
130	183	40	19	15	11		
140	308	41	22	15	11		

	Absolute difference measured to nominal CT numbers at each iodine concentration (HU)					
kV	0.5	2	5	10	15	
40	6	13	27	53	70	
50	4	10	18	34	45	
60	4	8	14	26	33	
70	4	7	11	20	25	
80	4	6	9	16	19	
90	4	6	8	14	16	
100	3	5	7	11	13	
110	3	5	6	14	11	
120	3	5	6	10	11	
130	3	5	6	9	10	
140	4	4	6	8	9	

- Measurements made at commissioning demonstrated that the in-house phantom was a useful and cost effective additional tool for assessing the dual energy capability of a DECT scanner
- There was a linear relationship between measured and nominal iodine concentrations. Measured values were similar to nominal ones and within published tolerances
- CT numbers of virtual mono-energetic images plotted against keV showed a similar trend to National Institute of Standards and Technology (NIST)-derived nominal values

- The calculated errors in nominal iodine concentrations are small. Calculations were based only on measurement errors (i.e. for the scales and syringe)
- For a more realistic approach, we will look to including operator error
 - By producing sets of verification vials and assessing consistency
- We note the errors quoted for CT numbers do not include any error in nominal iodine concentration – this will also affect the results and should be investigated

- We understand that material density accuracy may be dose dependant. So would like to repeat the iodine quantification measurements at different doses
- Look at assessing the virtual unenhanced images
- Extend the investigation to other materials e.g. calcium
- LOTS of reading!!

