

Experience with the use of Kyoto anthropomorphic phantoms in CT

Ruby Fong, Clinical Physics Barts Health NHS Trust

CT Users Group Meeting October 2024

Anthropomorphic Phantoms Kyoto Kagaku

Materials Soft tissue: Synthetic bone: Skull: urethane-based resin (specific gravity 1.06) epoxy resin (specific gravity 1.31) epoxy resin (specific gravity 1.11)

PBU-60 Whole Body Phantom 165 cm, 50 kg \rightarrow BMI 18.4 (packing weight 80 kg)

PBU-70 Paediatric Phantom (5y) 110 cm, 20 kg

PH-1 Lungman Phantom Chest girth 94 cm, 18 kg

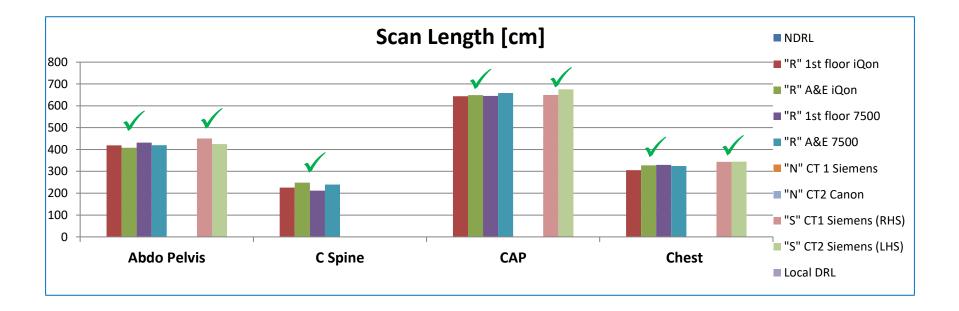
PBU-50 Newborn Phantom 53 cm, 3.5 kg

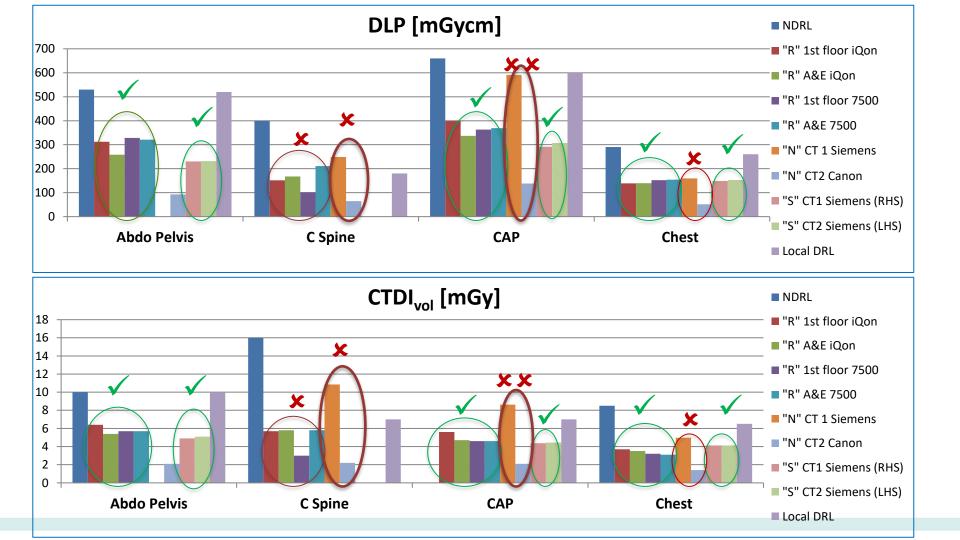
Same "patient" scanned by same radiographer & Physics at each site

Adult and paed (5y) phantoms on loan from 2nd to 28th May 2024 Lots of activities to experiment with phantoms in Diagnostic CT, General X-ray, Paed X-ray, IR Angio and R/therapy CT

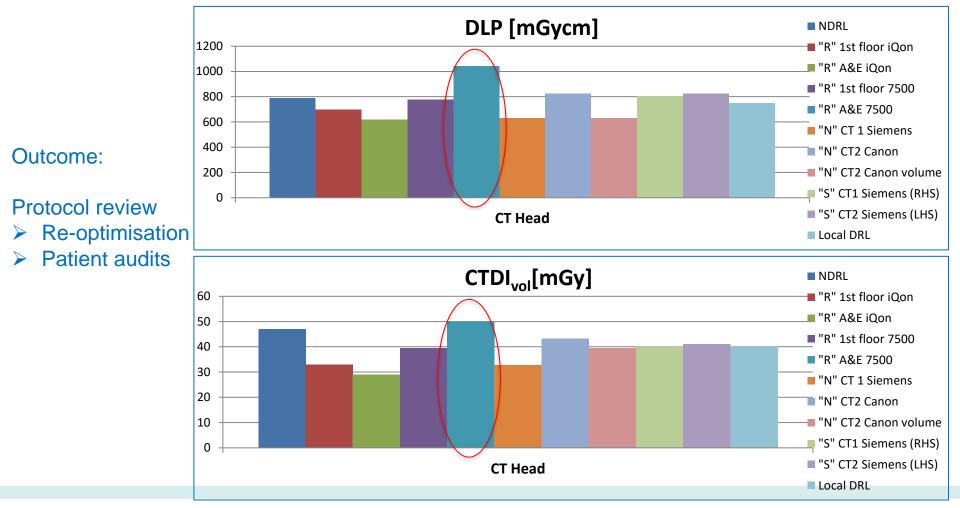
For Diagnostic Radiology Philips: iQon (x2), 7500, 7500 Pro Siemens: Somatom Definition Edge (x2), Definition Flash Canon: One Aquilion Prism

To find out:


- ? How harmonised scans are intra-site and across sites
- ? Optimisation priorities (corroborating with patient dose audits)
- ? Is phantom "realistic"
- ? Useful for showing effects of technique variations (mis-centring, arms up/down)
- ? Practicalities, including handling
- ??? Will it be worth buying


Adult protocols:

What did the scanning reveal?



Scan lengths for body scans – harmonised (same patient)

CT Head – Close to DRL except for 1 AE scanner

Interesting case: Hi-res Chest

2 neighbouring scanners at one site have very similar values of DLP, $CTDI_{vol}$ and scan length, but very different kV and mAs

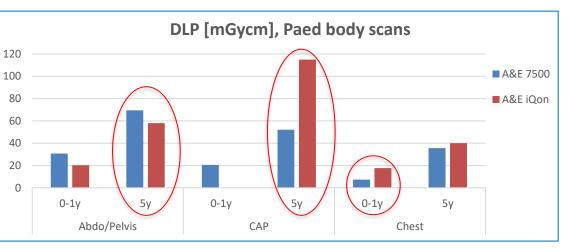
Scanner	kVp	mAs	CTDI _{vol} [mGy]	DLP [mGycm]
SBH CT1	120	45	3.04	108.4
SBH CT2	100	75	2.96	109.6

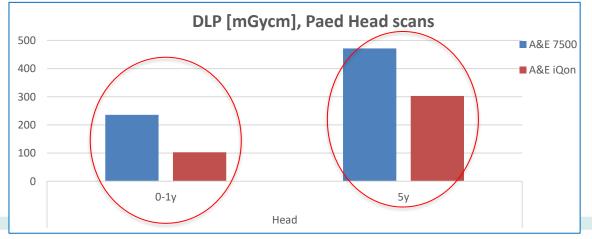

Which of these gives better image quality?

Paediatric protocols:

What did the scanning reveal?

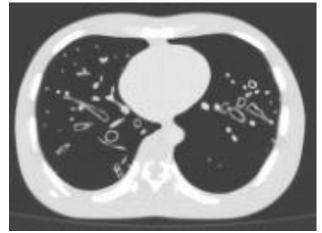
Kyoto paediatric phantoms


Newborn

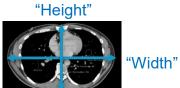


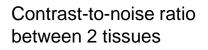
5y old

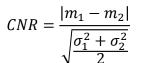
Review of protocols straightaway

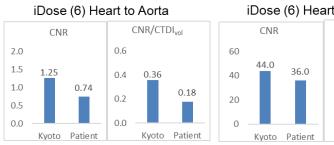

- Re-optimisation
- Patient audits following

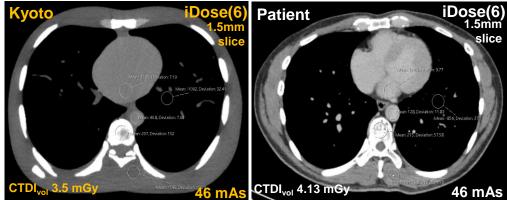
Phantom versus Patient on same scanner

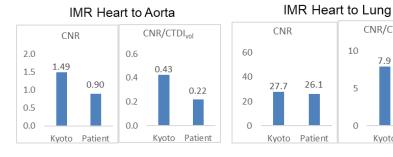

Kyoto: CAP scan 23/05/2024						
Scan Mode	mAs	k۷	CTDIvol [mGy]	DLP [mGy*cm]		
Surview		120	0.107	7.3		
Surview		120	0.107	7.3		
Helical	60	120	4.6	363		

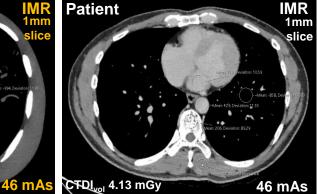

34y ♂: CAP scan 22/05/2024


Scan Mode	mAs	k۷	CTDIvol [mGy]	DLP [mGy*cm]
Surview		120	0.063	4.8
Surview		120	0.063	4.8
Helical	67	120	6.1	411.8

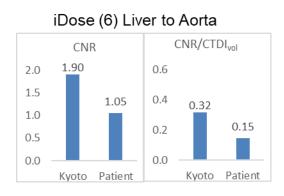

Body part measurements on axial slice		Kyoto	Patient
Chest through heart	Width [mm]	290.3	320.3
	Height [mm]	200.1	199.3
Abdo through liver	Width [mm]	273.8	301.3
	Height [mm]	187.8	180.5




CNR per unit dose: CNR/CTDI_{vol}

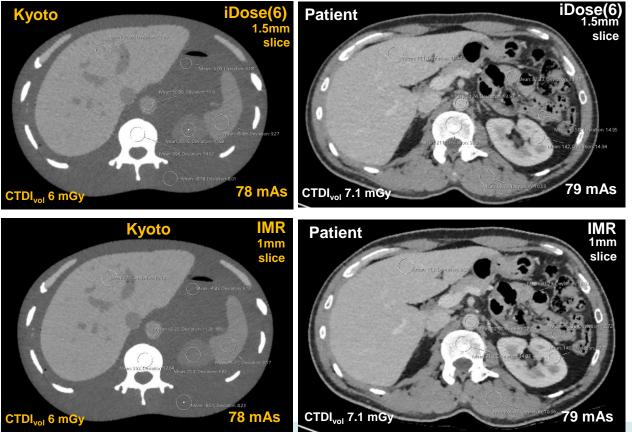

iDose (6) Heart to Lung CNR/CTDI_{vol} 15 12.6 8.7 10 5 Kyoto Patient

Philips 7500, Chest, 120 kV



- Kyoto CNR > Patient CNR \geq
- Good match between Kyoto and Patient for Heart to Lung CNR \geq
- For Heart to Lung CNR: IMR better match than iDose (6) Kyoto CNR/Pt CNR 1.06; CNR/dose ratio 1.25


Philips 7500, Abdo, 120 kV



IMR Liver to Aorta

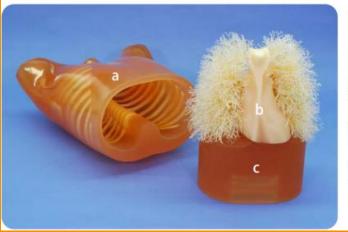
Kyoto CNR > Patient CNR

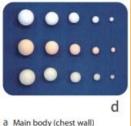
Summary - answering my own questions

? How harmonised scans are intra-site and across sites

- Reasonably so for body scans, except for 1 site
- ? Optimisation priorities (corroborating with patient dose audits)
 - Paediatric body scans, Adult head and C-spine

? Is phantom "realistic"

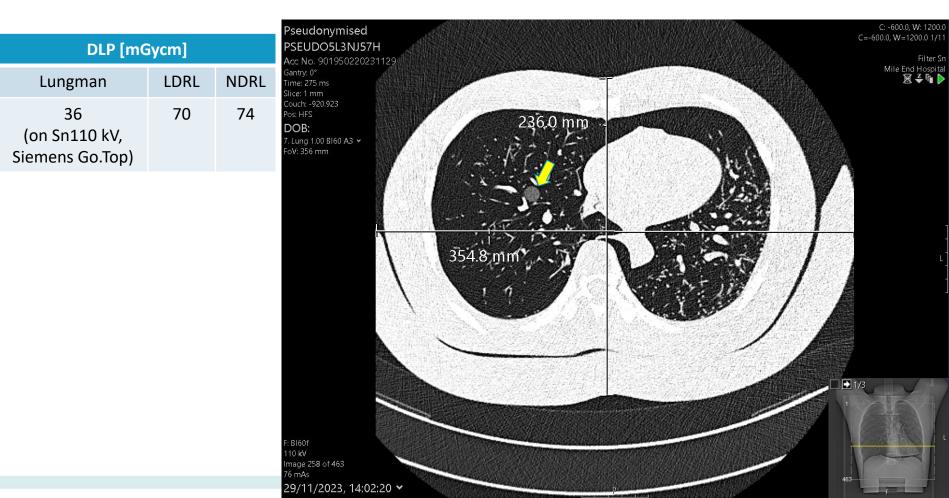

Depends: OK for dose optimisation but would need body plate to increase BMI (32, or 40); not so realistic for image optimisation



- ? Useful for showing effects of technique variations (mis-centring, arms up/down)
 - > Yes, but bigger effects seen if add body plates
- ? Practicalities, including handling
 - Heavy, storage space, time to assemble/disassemble, but able to cope;
 - > Need careful annotations/notes on scans when doing a run of experiments
- ??? Will it be worth buying if resources available
 - > Yes, I would say, if resources are available

Bonus:

Kyoto Lungman Trial (Nov. '23) For Targeted Lung Health Check Programme



- b Mediastinum (heart and trachea included)
- C Abdomen (diaphragm) block
- d Simulated tumors: 15 variations 3 varieties of Hounsfield numbers: -800, -630, +100 5 sizes for each time: diameter

3, 5, 8, 10, 12 mm

Phantom with body plate - dimensions more akin to those of a real patient

Thank you for listening

Acknowledgements

To MediScientific and BHRUT for lending us Kyoto phantoms and To Barts Health Radiation Safety Team and the Imaging departments at the sites involved

