Experiences of TCM testing

Laurence King

The RUH, where you matter

TOSHIBA

Inspiration from...

2018 CTUG meeting presentation by Gareth Iball on CT AEC testing:

Recommended remedial limits of: scan CTDI_{VOL} ± 15% from baseline noise ± 10 % from baseline.

But mainly: just do it!

https://doi.org/10.1120/jacmp.v17i4.6165

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS

Six years of AEC testing – what have we learned?

Gareth Iball, Alexis Moore, Lizzy Crawford

t

RUH Bath CT TCM QA in 2020

- □ CT TCM testing had been in place since 2013 ☺
- Nested CTDI phantom
- Scan average CTDI_{VOL} and DLP compared against previous results: but no quantitative tolerances.
- □ Performed every three years on each scanner.
- □ Only three attenuation steps in phantom
 - □ 16 cm diameter; 32 cm diameter; annular section.
- Sharp discontinuities between phantom sections
- Fine as a constancy check if phantom set-up and scan parameters are reproducible.
 - QA protocols must be set up identically and saved on each scanner!

Next step...

- □ Pre-2020: RUH Bath obtained a Leeds test object "CT AEC 25"
- □ 275 mm long (not including endplates)
- □ 11 × 25 mm-thick elliptical segments
- □ QA protocol not developed further at this point.
- □ This phantom was not used routinely.

O

2020: New phantom

- Mercury phantom obtained as part of DClinSci project looking at advanced image quality metrics.
- □ Advertised as appropriate for TCM tests.
- □ Approx 520 mm long. Five cylindrical sections joined by ramped sections - no discontinuous changes in phantom diameter.
- Each cylinder section has 5 contrast inserts

□ 30 kg in weight!

Cylinder section	1	2	3	4	5
Physical diameter (cm)	16	21	26	31	36
Water Equivalent Diameter (cm)	15.3	20.1	25.0	29.7	34.4

Phantom summary

Disclaimer: other phantoms are available!

Phantom	Cross- section profile	Water-equivalent Diameters (cm)	D Cl W
Nested CTDI phantoms	Cylindrical	17, 34 and 29.4 [head; full body; body annulus]	Ye
Leeds test object	Elliptical	11 steps between 15 and 37 cm	Ye
Mercury phantom	Cylindrical	15.3, 20.1, 25, 29.7, 34.4 – with continuous values inbetween.	N

The RUH, where you matter

one

es, small

/ED? es, large

iscrete step hanges in /ED?

Current Bath TCM protocol

- □ SPR of phantom avoiding discontinuities at either end (512 mm)
- SPR(s) should be performed the same way each time e.g. 12 o'clock only; or 12 followed by 9'clock, etc.
 - □ We do whatever is most commonly performed in clinical use on each scanner (i.e. one on Siemens scanners; two on GE).
- Phantom scanned helically using identical 500 mm scan ranges at two or more different dose levels.
- Dose levels determined by protocol Noise Index / Quality reference mAs, SD, etc.
 - e.g. Siemens scanners: scan series are based on default Thorax and Abdomen scans at quality reference mAs of 66 and 147 mAs respectively.

Scout

П

TCM test protocol tips

Routine QA - we want the mA to modulate as freely as possible!

- Don't use mA caps, choose dose levels that will avoid minimum or maximum tube mA being reached for your phantom.
 - Do a pre-scan check using the displayed mA table / mA chart on the scanner interface
- Don't scan too fast we want the tube current to be able to adapt to changes in phantom size.
- When characterising the CT system at **commissioning** break the above rules!
 - □ E.g. determine how modulation is inhibited by fast scan times / high pitch values
 - □ E.g. at what water equivalent diameter is modulation inhibited by tube current limits?
- This will be informative when it comes to clinical scan optimisation

Bath analysis of TCM QA images

- Reconstruct images at 5 mm slice thickness giving us 100 images.
- Use a standard body kernel, medium IR strength (as used clinically)
- Reconstructed field of view always set at 400 mm to ensure entire phantom fits in FOV □ The maximum Mercury phantom physical diameter is 36 cm
- Export images and perform automated analysis in ImageJ:
 - □ Manually positioned ROI for noise measurement; manual ROI to remove couch top from image mask in order to calculate Water Equivalent Diameter of just the phantom.
 - The plug-in interrogates DICOM tags for scan parameters in each image, too.

Analysis of TCM test images

The analysis results file includes the following from each image slice: □ Water Equivalent Diameter

$$WED = 2 \times \sqrt{\left(\frac{\overline{HU}}{1000} + 1\right)} \times$$

- □ Image Noise in the analysis ROI
- From DICOM tags: series number, image number, kV, rotation time, tube mA, pitch, slice thickness, recon kernel, and $CTDI_{VOI}$ if optional DICOM tag (0018,9345) is populated^{**}
- **Effective mAs** calculated from DICOM pitch, rotation time and mA:

 $Effective mAs = tube mA \times rot time \div pitch$

** N.B. our GE scanners do not populate the optional DICOM tag (0018,9345); our Canon scanner returns the scan average CTDI_{VOL} in this tag for every image in a series. Instead, we manually calculate it from effective mAs and commissioning $CTDI_{VOL}$ per mAs. The RUH, where you matter

 π

Analysis output - plots

□ Plots of effective mAs versus (left) couch position; and (right) versus phantom WED

AAPM recommendations

□ AAPM report 233 published in early 2019 recommends:

3.1 Tube Current Modulation

3.1.1 Objective

To characterize the tube current modulation (TCM) in terms of tube current and image noise as a function of attenuation.

□ Characterisation as a **function of attenuation** is key, therefore the more sizes (Water Equivalent Diameters) your TCM phantom has, the better.

Analysis completed in spreadsheet

Scan conditions and displayed CTDI_{VOL} and DLP are recorded, output csv pasted into sheet to generate charts.

n_kernel	SliceThick	ROInoise	WED
\3	5	15.488	338.279
\3	5	15.261	343.191
\3	5	14.952	343.744
13	5	16.959	343.776
13	5	15.43	343.815
13	5	15.709	343.856
\3	5	13.851	343.81
\3	5	14.413	344.178

Results – four scanners same vendor

□ 4 scanners of the same vendor – plots for comparison

- 🔺 CT4 thorax
- ×CT3 thorax
- CT2 thorax
- CT1 thorax

Results – four scanners from the same vendor

- \Box CT4 the only scanner where the phantom was scanned in the other direction to others (small to large diameter rather than large to small)!
- Interestingly replot with this scanner data offset by approx. distance of N×T detector coverage:

CT1	CT2	CT3	CT4
-3.1	-1.6	-7.9	12.6
-4.6	-4.3	-8.5	17.5

Results - Two other scanners with constantnoise TCM strategies

• Confirms that noise is maintained, except where mA caps are reached (minimum, in this case)

PAUSE and CHECK

- □ Tests so far great for TCM functionality and consistency checks.
- □ But why should we *routinely* test TCM response?
- □ We are looking for changes in performance.
- □ Annual checks not appropriate for detecting changes to individual clinical protocols
 - □ Far too many to test!
 - □ A robust system of protocol control should be in place for clinical protocols.
 - Unexpected clinical protocol changes should be picked up by clinical users
 Image quality; comparison against Local DRLs, etc.
 - □ Or else by dose audit

□ Instead, routinely, we are concerned about global scanner changes in TCM settings.

Sensitivity to change in TCM response

- Individual and batch protocol changes are password-protected on our diagnostic CT scanners
- Scanner tube current modulation strength settings are not

The RUH, where you matter

xamination Configuration	
Patient Dose Workflow	Topogram Pro
Display Options	CARE Dose4D cor
Dose notification 💌 CARE Profile	 Organ characteris
Exposed range	Srain
	Shoulder
Dose Report	Thorax
Activate Dose Report 🗸 🔹 Auto transfer	Abdomen
	Pelvis
	Spine
Dose Alert	✓ Head/Vascular He
Tramination Continuation	Vascular Body
CTDI Patient Dose Workt	low Topogram
D Disslay Options	Topogram
- Display Options	CARE D
OK Dose notification V CAR	E Profile 🖌 🔽 Organ
Exposed range	✓ Brain
	Shoul
Dose Report	🗹 Thora
Activate Dose Report 💌 Auto	o transfer 💌 🞴 Abdor
Additional transfer PACS	✓ Pelvis
	Osted
Dose Alert	🖬 Head/
Adult Child	Vasci
CTDIvol 1000 🕂 mGy 500 🕂 r	nGy Cardio
DLP ᅼ mGv*cm ᅼ r	nGv*cm 🔽 Respi
QK Apply Default S	ettings <u>C</u> ancel

tice	Child	Adult clim	Adult obece
nics	Average	Averane	Averane
	Auereae	Auerage	Average
	Average	Average	Average
ad	Average	Average	Average
	Average	Average	Averano

Processing

Contrast

ose4D configuration: mAs adaptation to patient size

characteristics	Child	Adult slim	Adult obese
	Average	Very strong	Very strong
	Average	Very strong	Very strong
der	Average	Very strong	Very strong
	Average	Very strong	Very strong
nen	Average	Very strong	Very strong
	Average	Very strong	Very strong
	Average	Very strong	Very strong
	Average	Very strong	Very strong
Vascular Head	Average	Very strong	Very strong
ilar Body	Average	Very strong	Very strong
	Average	Very strong	Very strong
	Average	Very strong	Very strong
ratory	Average	Very strong	Very strong

Help

Sensitivity to change in TCM response

□ Phantom scanned at AVERAGE, VERY WEAK and VERY STRONG tube current modulation strengths, 120 kV, pitch 0.6, Quality reference mAs at 147 mAs (based on default CT) abdomen).

Strength setting	Average scan CTDI _{VOL} [mGy]	% change from baseline	Scan DLP [mGycm]	% change from baseline	
AVERAGE / AVERAGE	4.96	0 %	253.0	0%	5

CTDIvol vs WED - abdomen region

Sensitivity to change in TCM response

□ Why didn't we detect the change from AVERAGE to V STRONG modulation response in average $CTDI_{VOI}$ and DLP?

- □ At the stronger TCM response, the minimum mA was reached for phantom diameters below approx. 200 mm - no further modulation possible.
- \Box The decrease in CTDI_{VOL} for smaller phantom diameters was also partially offset by an increase in $CTDI_{VOI}$ for larger phantom diameters.

Sensitivity to change in TCM response

Instead – look at the gradient of response curves - recommended by AAPM 233

Sensitivity to change in TCM response

Instead – look at the gradient of response curves - recommended by AAPM 233

Strength setting	Gradient	% change	Gradient (In
	(noise vs	from	CTDI _{VOL} vs
	WED)	baseline	WED)
AVERAGE / AVERAGE	0.0265	0 %	0.011

3.1.7 Recommended Performance Metrics

- Slope α and the correlation coefficient (R_{mA}) of $\ln(mA) = \alpha(d_w) + \beta$ relationship (g_{mA}) , for a given phantom
- Slope s and the correlation coefficient (R_n) of $n=s(d_w)+t$ relationship (g_n) , for a given phantom

% change from baseline

0 %

Reproducibility of TCM response for same vendor:

The RUH, where you matter

150 170 190 210 230 250 270 290 310 330 350 WED [mm]

Sensitivity to change in TCM response

- The gradients of noise vs WED and $ln(CTDI_{VOI})$ vs WED are straightforward to add to our analysis spreadsheets.
- For these to be assessed our phantom needs a range of WEDs.

20 4

The Mercury phantom provides a continuous range of WEDs from 15 to 35 cm.

Scan series (1):

100

E00

0 6

OFF

010 E

12 0452 D-2082

es	% change
8	40.45
5	-53.64

correlation
0.9798

|--|

ernel	SliceThick	ROInoise	WED
	5	9.732	339.38
	5	8.378	343.698
	E	0 607	242 005

Characterising TCM response – a story

Background

- New SPECT-CT system install during COVID lockdowns in 2020.
- CT component is a third-party manufacturer bolt-on to the SPECT system
- □ Very little prior information from the vendor or manufacturer on TCM strategy, not described in scanner user manuals.

Constant noise strategy? Constant image quality strategy? Unknown.

kV set in protocol; prescribed tube current controlled via "effective mAs" parameter

After performing scan projection radiograph, the user can view a mA modulation chart plotted against SPR image – clearly shows modulation as a function of attenuation.

Initial scans

□ Single scan of phantom of varying diameter demonstrated modulation of tube current against phantom diameter

□ Varying the effective mAs parameter gave proportional changes in delivered DLP and seriesaverage CTDI_{VOL}

□ So far so good. But...

Further scanning

- □ Scanning just the small diameters of the phantom or just the large diameters of the phantom - gave the same scan average CTDI_{VOI} and DLP. □ For **both** ranges, the mA modulated from approx. minimum to maximum.
- All clinical scans with TCM enabled gave the same scan average effective mAs – regardless of overall patient size.
- The mA modulates within anatomy, but seems not to take into account overall patient size.
- Images, data, queries sent to vendor we were told that this was the correct and intended function of this feature.

Outcome

- We would have taken a lot longer to come to this realisation if we didn't have a decent TCM test protocol, or if we did not have appropriate phantoms.
- Vendor not at fault system operating as they expected. Just not as we expected! We did not have sufficient information to know this.
- Having a test protocol and appropriate phantoms enables us to characterise the functionality of these systems
- Clinically: most scanning on this system is performed for attenuation correction and localisation: highest diagnostic quality not required. Weight-based mA prescriptions introduced for other exams.

Conclusions

Conclusions

- □ Should we be testing TCM response?
- YES it informs us how these systems work, enables appropriate optimisation advice, and we've confirmed our tests are sensitive to global changes in TCM settings.
- At RUH Bath our strategy will be to test using absolute values AND the gradient of noise and CTDI_{VOL} response curves – Local tolerances on the latter yet to be defined.

Test	Test automatic exposure contr	
Commissioning	YES	
Major software change	YES	
Routinely	Infrequently – every three years currently	

Implementation in progress: pending on documentation updates within our Quality System! The RUH, where you matter

